TOWARDS A NEW URBAN PARADIGM? - Conceiving the city of the future

Lecture 1: urbanization - from the diffused to the eco-city model

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Cities and sustainability

Conclusions

Let's start with a positive message!

Tomorrow, the world is full of solutions

https://www.youtube.com/watch?v=0SI-Kyam_Jk

Module: Ecological aspects of urbanization in mountain areas

Cities and

The diffused and **Responses to** the crisis

globalised city

Criticisms to eco-**Eco-cities** modernisation

Alternative paradigms

Transition Conclusions processes

Urban areas: key for the attainmnt of sustainability goals?

Urban areas

Main source of pressures on the environment

Module: Ecological aspects of urbanization in mountain areas

The diffused city model

London, UK

Los Angeles, USA

Module: Ecological aspects of urbanization in mountain areas

Cities and	
sustainability?)

Alternative paradigms

Transition processes

Conclusions

The diffused city model

Co-funded by the Erasmus+ Programme

Material flows in cities - the globalised city

Flows and stocks of goods in Vienna (Daxbeck et al., 1996)

Module: Ecological aspects of urbanization in mountain areas

UNIVERSITÄT SALZBURG

Module: Ecological aspects of urbanization in mountain areas

Only one central node

Small and multiple central nodes

Dispersed nodes

(Graham and Hunter, 1994)

Eco-cities

Criticisms to ecomodernisation Alternative paradigms

Transition processes

Conclusions

Responses to the environmental crisis

The city of the 3 levels (Salvador Rueda)

Module: Ecological aspects of urbanization in mountain areas

Eco-cities

Criticisms to ecomodernisation Alternative paradigms

Transition processes

Conclusions

Responses to the environmental crisis

The city of the 3 levels (Salvador Rueda)

Module: Ecological aspects of urbanization in mountain areas

Cities and sustainability?

The diffused and Responses to globalised city the crisis

Eco-cities

Criticisms to ecomodernisation Alternative paradigms

Transition processes

Conclusions

Responses to the environmental crisis

The city of the 3 levels (Salvador Rueda)

REUSE REDUCE RECYCLE

Co-funded by the Erasmus+ Programme of the European Union

Eco-cities

Criticisms to ecomodernisation Alternative paradigms

Transition processes

Conclusions

Responses to the environmental crisis

The city of the 3 levels (Salvador Rueda)

Module: Ecological aspects of urbanization in mountain areas

Eco-cities

Criticisms to ecomodernisation Alternative paradigms

Transition processes

Conclusions

Responses to the environmental crisis

The city of the 3 levels (Salvador Rueda)

Module: Ecological aspects of urbanization in mountain areas

Cities and sustainability?

The diffused and Responses to globalised city the crisis

Eco-cities

Criticisms to ecomodernisation Alternative paradigms

Transition processes

Conclusions

Responses to the environmental crisis

The city of the 3 levels (Salvador Rueda)

Biodiversity and preservation of geographic and natural	U Sul	rban metabolism bsoil	
values	THE C THE 3	ITY OF	Mobility and functionality
Si	irface	Height	
Urban complexity knowledge soci	y and ety	Public space	

Co-funded by the Erasmus+ Programme of the European Union

Requirements to be met by an eco-city (Eco-city World Summit, 2008):

1 Ecological security

2 Ecological sanitation

3 Ecological industrial metabolism

4 Eco-scape

Ecological awareness

Eco-city of Dongtan, China

5

Actions needed for the development of eco-cities (Łobejko et al., 2015):

- 1 Provide safe water, sanitation, etc.
- 2 Build cities for people
- 3 Identify ecological sensitive areas, etc.
- 4 Design cities for energy conservation, renewable energy uses and the reduction, reuse and recycling of materials
 - Build cities for safe pedestrian and nonmotorized transport use

Masdar City, United Arab Emirates

Co-funded by the Erasmus+ Programme of the European Union

5

Actions needed for the development of eco-cities (Łobejko et al., 2015):

- 6 Encourage investment in eco-city building
 - Provide education and training programs
- 8 Create a government agency at each level
- 9 Address global heating, etc. in the plans and actions of all institutions

- 10 Sh
- Share experiences, lessons and resources

BedZED, UK

Module: Ecological aspects of urbanization in mountain areas

Joss (2009) identified:

79 eco-city initiatives around the	globe
(autumn 2009)	

In Europe, most eco-cities in Scandinavian countries, the UK and Germany

Over ¼ of the eco-city initiatives have been implemented

Number of eco-quarters identified by Joss (2009) per geographical region

Module: Ecological aspects of urbanization in mountain areas

Districts awarded as eco-quarters in France between 2013 and 2015 (Ministry of Housing, Territorial Equality and Rurality of the French

Republic, 2015)

Transition

processes

Eco-cities

The example of Freiburg im Breisgau

Renewable energy sources

Football stadium of Freiburg (Management Marketing FWTM Freiburg, 2018)

Solar city hall (City of Freiburg, 2008)

Solar facade of the residential complex at Wilmersdorfer Street (City of Freiburg, 2008)

The Heliotrope

Module: Ecological aspects of urbanization in mountain areas

SALZBURG

Module: Ecological aspects of urbanization in mountain areas

Management Marketing FWTM Freiburg, 2016

Co-funded by the Erasmus+ Programme of the European Union

Module: Ecological aspects of urbanization in mountain areas

30

Management Marketing FWTM Freiburg, 2016

Module: Ecological aspects of urbanization in mountain areas

Fraunhofer Institute for Solar Energy Systems

Eco-tourism in Freiburg (Management Marketing FWTM Freiburg, 2016)

SUNRAISE

of the European Union

Please gather in groups and prepare yourself for an exciting quiz on strategies for the sustainability of cities.

We will have three group, 1 hour and lots of points to deliver. And the most important thing: one winner. Who will be the winner? You decide!

THANKS FOR YOUR ATTENTION!!

MSc. Marc Giménez Maranges Department of geography and geology – University of Salzburg marc.gimenezmaranges@sbg.ac.at TOWARDS A NEW URBAN PARADIGM? - Conceiving the city of the future

Lecture 2: transitioning towards a more sustainable urban paradigm

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Now, it is time to discuss! Please gather in groups and discuss on your conclusions. Afterwards, discuss your ideas with the rest of your classmates.

1. Do you think that the eco-city approach suffices for the attainment of a more sustainable urban paradigm? Think on the strengths and weaknesses of the eco-city concept.

Eco-cities

Criticisms to ecomodernisation Alternative paradigms

Transition processes

Conclusions

Criticisms to eco-modernisation

Eco-cities - really ecological?

Number of not fulfilled ecological demands

Technological focus, social issues generally disregarded

No change on residents' behaviour

Ideal city model \longrightarrow problematic

Eco-modernisation has reached its limits

Positive outcomes, but questionable when compared to the effects of economic growth

Module: Ecological aspects of urbanization in mountain areas

Eco-cities

Criticisms to ecomodernisation

Alternative paradigms

Transition processes

Conclusions

Criticisms to eco-modernisation

Need for radical change?

Current approaches:

Inability to respond to the underlying problems

Exclusion of alternative visions

Is a drastic and systemic transformation necessary?

Alternative paradigms

Regenerative sustainability paradigm

Main ideas

Humans are part of nature

There is no set of ideal 'sustainability' conditions that should be maintained

It is sought to create cities and building that function as ecosystems

It is sought to generate positive impacts on the remaining environment

Place is at the core of human life

All stakeholders, including citizens are involved in the design of place

Cities and sustainability?

Alternative paradigms

Regenerative sustainability paradigm

The compact city model and the reconciliation between the city and nature – incompatible?

Module: Ecological aspects of urbanization in mountain areas

- 2 Phase 2: designing for harmony with place
- 3 Phase 3: co-evolution

Regenerative framework (Mang and Reed, 2012)

© Regenesis Group. Inc

8

Co-funded by the

"The purposive action of individuals and organisations aimed at creating, maintaining and disrupting institutions" (Lawrence and Suddaby, 2006)

Transition processes have to be adapted in every context!

Renaissance

French revolution

ropean on

20

Please gather in groups and discuss on the following question. Develop your arguments on the basis of the knowledge gained through the video on the transition towns network that you have previously watched.

1. You are very environmentally engaged and want to start with a grassroots initiative for the transformation of the urban area where you live. Think of how you would start a grassroots initiative, for a more sustainable urban development. Not least, think of: 1) the topic which you would like to develop (energy, etc.); 2) how you would start with the grassroots process (gathering of people); 3) how you would arrange the decision process; 4) how you would keep people engaged, etc.

Time: 1 hour and 30 minutes

It is time to present your results! Please present your results to the class on the following question. Afterwards, discuss on the distinct ideas suggested.

1. You are very environmentally engaged and want to start with a grassroots initiative for the transformation of the urban area where you live. Think of how you would start a grassroots initiative, for a more sustainable urban development. Not least, think of: 1) the topic which you would like to develop (energy, etc.); 2) how you would start with the grassroots process (gathering of people); 3) how you would arrange the decision process; 4) how you would keep people engaged, etc.

THANKS FOR YOUR ATTENTION!!

MSc. Marc Giménez Maranges Department of geography and geology – University of Salzburg marc.gimenezmaranges@sbg.ac.at Research Group Urban and Landscape Ecology

Urban Nature and Urban Ecosystem services

Prof. Dr. Jürgen Breuste

Paris Lodron University Salzburg, Austria

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Urban Ecosystem services on the local level

Urban green spaces as providers of urban ecosystem services

- The services overview
- The providers/generators
- The spaces and spatial scales
- The services on site level four selected case studies
 - A methodological proposal
- New chances new challenges
Landscape goes urban!

٥ **RG Urban and Land**

Landscape goes urban!

OPEN SPACE SYSTEM

- Parks
- Street trees
- Gardens (House, Institutional, Other private)
- Agricultural areas
- Rehabilitated areas
- Fragmented natural areas in city
- Natural areas surrounding city (Including nature reserves)
- Other open areas

ECOSYSTEM SERVICES AND FUNCTIONS

Provisioning

Food

.

.

- Clean water - Wood and fibres
- Genetic resources
- Regulating
- Air purification
- Climate regulation
- Mineral cycling

Supporting

- Soil formation
- Primary production
- Cultural .
 - Aesthetics
 - Education
 - Ecotourism

- Habitat
- Natural medicine
 - Water purification
- Erosion regulation
- Waste treatment
- Photosynthesis
- Spiritual values
- Recreation

- ECOSYSTEM HEALTH Air quality
 - Water quality
 - Soil structure
 - Habitat and species diversity
 - Ecosystem resilience

Services and indicators of quality of life related to the dimensions of sustainability

Sustainability dimension	Urban Ecosystem Service	Quality of life indicator
Ecology	Air filtration	Health (clean air,
	Climate regulation	protection against
	Noise reduction	respiratory diseases,
	Rain water drainage	protection against heat
	Water supply	and cold death)
	Waste water treatment	Safety
	Food production	Drinking water
		Food
Social sphere	Landscape	Beauty of the environment
	Recreation	Recreation and stress
	Cultural values	reduction
	Sense of identity	Intellectual endowment
		Communication
		Place to live
Economy	Provision of land for	Accessibility
	economic and commercial	Income
	activities and housing	

ürgen Breuste, Dagmar Haase, Thomas Elmqvist (2011): Urban landscapes and Ecosystem Services. In: Harpinder Sandhu, Steve Wratten, Ross Cullen and Robert Costanza (Editors): ES²: Ecosystem Services in (N=)

Potential Ecosystem Services

Allotment area		Domestic gardens	Golf courses
Provisioning services		A CONTRACTOR OF	
Fire wood		Χ*	
Food (fruits & vegetables)	X*	Χ*	
Ornamental resources (flowers)	X*	X*	
Cultural services			
Aesthetic values	Х	Х	X
Inspiration	X*	X*	X*
Nature education	X*	X*	Х
Recreation	X*	X*	X*
Social relations	X*	Х	Х*
Regulating services			
Air filtration	Х	Х	Х
Erosion regulation	X	Х	Х
Noise reduction	Х	Х	Х
Nutrient retention (in ponds)			Х
Pest regulation	Х	Х	Х
Regulation of microclimate	Х	Х	Х
Surface water drainage	X*	X*	X*
Supporting services			
Habitat for flora & fauna	X*	X*	X*
Soil formation	Х	Х	Х
Seed dispersal	Х	Х	Х
Pollination	X*	Χ*	Х
Water cycling	Х	Х	Х

RG Urban and Landscape Ecology

Urban ecosystems generating local and direct services, relevant for Stockholm (Bolund and Hunhammar, 1999)

	Street tree	Lawn/parks	Urban forest	Cultivated land	Wetland	Stream	Lake/Sea
Air filtering	Х	X	Х	Х	Х		
Micro climate regulation	x	х	x	Х	х	x	х
Noise reduction	X	Х	X	Х	x		
Rainwater drainage		X	Х	Х	x		
Sewage treatment					x		
Recreation/cultural values	Х	Х	Х	Х	Х	Х	X

The serives (Niemelä et al 2010, changed)

Group	Ecosystem service	Service generating unit
Provisioning services	Timber products	Different tree species
	Food: game, berries, mushrooms	Different species in land, fresh-water and sea ecosystems
	• Fresh water, soil	Groundwater infiltration, suspension and storage
Regulating service	• Regulation of microclimate at the street and city level, changes in heating costs	Vegetation
	 Gas cycles, O₂ production, CO₂ consumption 	 Vegetation, especially forests
	Carbon sequestration and storage	Vegetation, especially trees
	Habitat provision	Biodiversity
	Air pollution purification	Vegetation covered areas, soil
		microorganisms
	Noise cushioning in built-up areas and by transportation	 Protective green areas, thick/
	channels	 wide forest, soft surfaces
	Rain water absorption, Balancing storm water peaks	Vegetation cover, sealed surface, soil
	Water infiltration	Wetlands (vegetation, microorganisms)
	Pollination, Maintaining floral populations, food production	Insects, birds, mammals
	Humus production and maintaining nutrient content	• Litter, invertebrates, microorganisms
Cultural	Recreation of urban dwellers	Biodiversity, especially in parks, forests and
services		water ecosystems
	Psycho-physical and social health benefits	Forest nature
	Science education, research and teaching	Biodiversity

Niemelä, J, S-R Saarela. T Söderman, L Kopperoinen, Vsa Yli-Pelkonen, S Väre, D J Kotze (2010). Using the ecosystem services approach for better planning and conservation of urban green spaces: a Finland case study. Biodivers Conserv (2010) 19:3225–3243

p.3229-3230

The generators (Niemelä et al 2010, changed)

Group	Ecosystem service	Service generating unit		
Provisioning	Timber products	Different tree species		
services				
	Food: game, berries, mushrooms	• Different species in land, fresh-water and		
		sea <mark>ecosystems</mark>		
	Fresh water, soil	Groundwater infiltration, suspension and		
		storage		
Regulating	Regulation of microclimate at the street and city level, changes in	Vegetation		
service	heating costs			
	 Gas cycles, O₂ production, CO₂ consumption 	Vegetation, especially forests		
	Carbon sequestration and storage	Vegetation, especially trees		
	Habitat provision	Biodiversity		
	Air pollution purification	Vegetation covered areas, soil		
		microorganisms		
	Noise cushioning in built-up areas and by transportation channels	 Protective green areas, thick/ 		
		 wide forest, soft surfaces 		
	Rain water absorption, Balancing storm water peaks	• Vegetation cover, (sealed surface?), soil		
	Water infiltration	• Wetlands (vegetation, microorganisms)		
	Pollination, Maintaining floral populations, food production	Insects, birds, mammals		
	Humus production and maintaining nutrient content	• Litter, invertebrates, microorganisms		
Cultural services	Recreation of urban dwellers	Biodiversity, especially in parks, forests and water ecosystems		
	 Psycho-physical and social health benefits 	Forest nature		
	Science education, research and teaching	Biodiversity		
	 Ecosystems (natural — Biological process Physical processes 	, man-made) es: Species, organisms		

Niemelä, J, S-R Saarela. T Söderman, L Kopperoinen, Vsa Yli-Pelkonen, S Väre, D J Kotze (2010). Using the ecosystem services approach for better planning and conservation of urban green spaces: a Finland case study. Biodivers Conserv (2010) 19:3225–3243

Potential Functions and Benefits of Urban Green Spaces						
Urban green spaces		Urban green spaces				
play a key role for recre quality of life for people liv urban area and provide lo leisure, sport and play act	eation, enhance the ing and working in an cations for different ivities.	support the protection of natural resources. provide wild life habitat and positively affect				
help promote healthy lif	estyles.		species diversity.			
contribute to social include development and citizensh for cultural and social even	usion, to community hip and provide venues hts.	mitigate environmer the urban climate, by	tal stress associated with their ecological regulatory effects, absorption of			
support environmental education and lifelong learning as an educa- tional resource and help develop better understanding concerning ecological and environmental processes.	Social Functions	Ecological Functions and Environmental Benefits	emissions, the reduction of noise, reducing air pollution, controlling water run-off and form important elements for storm water management and sustainable urban drainage systems.			
Urban green spaces			Urban green spaces			
serve as a factor in the location of new businesses.	Economic Benefits	Design and Planning	define the urban structure.			
invigorate local businesses and neighbourhood economies by attracting tourists and investment.			give local character and identity, provide distinctive landscape and give legibility and structure to the urban fabric.			
offer direct employment people who develop, man sites.	opportunities for those age and maintain the	contribute to the aesthetic, historical and cultural identity of a city, provide a natural balance to built form and can be developed as a green network to ensure contact with the natural world.				

URGE-Team, 2004, (Se)12

The Green

The Grey

- *First type of nature*: remains of the original natural landscape such as forests and wetlands
 - Second type of nature: cultural landscapes formed by agriculture with meadows, pastures, fields, hedges, drifts, dry grasslands,
- *Third type of nature*: horticultural designed green spaces such as parks, road trees, front gardens, green buffers or potted plants,

Fourth type of nature: specific urban industrial nature such as ruderal urban forests, spontaneous vegetation, waste land etc. (Kowarik 1992)

Vegetation Group	Vegetation structure type	Main existing Ecosystem Services	Main potential ecosystem services
A) Vegetation remnants of the original natural landscape	Woods and forests Wetlands	Timber production, recreation, biodiversity , micro-climate regulation, rainwater drainage, sewage treatment	Nature experience, learning about nature
B) Vegetation of the cultural landscapes formed by agriculture	Meadows, pastures, drifts, dry grasslands arable land	Food production, micro- climate regulation, rainwater drainage	Recreation, biodiversity, nature experience
C) Ornamental, horticultural and designed urban vegetation spaces	Decorative green (flower beds, small lawn patches, bushes, hedges, etc.)	Decoration, cultural values	Biodiversity, rainwater drainage
	Accompanied green along traffic lines or as addition to fill up the space between apartment blocks	Air filtering, micro-climate regulation, rainwater drainage	Recreation, biodiversity
	Gardens/parks Allotment gardens, urban trees	Recreation, micro- climate regulation, Air filtering,	Biodiversity, nature experience, learning about nature
D) Spontaneous urban vegetation spaces	Spontaneous herbaceous bush and pre-forest vegetation	Biodiversity, , micro- climate regulation	Biodiversity, learning about nature, nature experience, recreation

Breuste according to Arbeitsgruppe Methodik der Biotopkartierung im besiedelten Bereich (1993), Kowarik 1992, Bolund and Hunhammar, 1999 (modified)

The spaces and spatial scales

Scale Level Administrative	Planning Level	Landscape Dimension	Research Topic Urban Climate
Urban Region/ City	Land Use Plan	Urban Eco-System meso-choric/ macro-chorical	Joint Climatope
District Urban District	Land Use Plan	<u>Subsystem</u> nano-chorical	Climatope of Concentrated Building
Statistical Block	Building Plan	<u>Landscape Structure</u> topical	Court Yard Climate
Building	Building Plan	Landscape Element topic/subtopical	Building Climate Tree Climate

RG Urban and Landscape Ecol

Urban Structure Typs

Sealed surfaces in differend urban structure types of Salzburg (in %)							
Urban Structure Type	Built -up (%)	Sealed open space (%)	Not sealed open space (%)	Soil sealing degree (%)	Target (%)		
Detached curb-close apartment buildings with built-up courtyards	50	31	19	81	60		
Detached curb-close apartment buildings (renovated)	42	33	25	75	60		
Detached curb-close apartment buildings with open courtyards	56	17	27	73	60		
Detached curb-close apartment buildings with open courtyards	39	26	35	65	60		
Terraced curb-close apartment buildings with open courtyards	37	22	41	59	60		
Large prefabricated housing estates	29	25	46	54	50		
Detached and semi-detached houses	28	23	49	51	40		
Villas	20	11	69	31	40		

CONSTITUENTS OF WELL-BEING

Differences of soil sealing in urban structural units

Where is it green? Who profits from ist ecosystem services?

Structure of Soil Sealing Types Example Salzburg

Red – buildings Black – Asphalt Green – Green Areas Other colours – Different Sealing Types

The services on site level - 1) Climate regulation

Climate Change in Cities – What we can expect:

- warmer and more arid summers,
- erratic distributed precipitation,
- increase of der hot days with daily average temperatures over 25 ° C

Winter temperatures

2.5

2.0

1.5

3.0

Sommer temperatures

14

15

13

Mirco-climate measurement

Bauer 1998, Leipzig

Urban and Landscape Ecolo RG

Vegetation Structures – Regulating Service – Climate Moderation

Degree and extension of climatic service

Shanghai, Yanzhong Greenery 2000-2001

17,07 ha built-up land was changed into 11,85 ha green area,4.837 families were settled elsewhere

2) Biodiversity, Linz, Austria

Bauernberg-Park, Linz, Austria

Harbach-Park, Linz, Austria

Amt für Natur- und Umweltschutz Naturkundliche Station

Parks	BS1	BS2	BS3	Aggregate Value of different Breeding Categories	Number of breeding bird species
Bauernberg	15	10	12	71	37
Freinberg West-Ost	12	12	8	52	32
Hummelhofwald	10	8	13	65	31
Freinberg Aroboretum	9	8	8	51	24
Bergschlössl	1	14	9	37	25
Panuliwiese	11	6	7	37	24
Wasserwald	10	10	3	36	22
Schlossberg	3	10	9	41	23
Donaupark	6	13	2	36	21
Volksgarten	6	7	6	32	19
Universitätspark	6	6	4	26	16
Pöstlingsberg	6	6	3	24	15
J.W.Kleinstrasse	4	5	1	16	10
Wag-Park	4	5	1	16	10
Ökopark	7	1	2	13	10
Ing.Stern.Strasse	2	2	5	16	9
Erholungspark Urfahr	3	1	3	11	7
Peuerbachstrasse	3	1	0	5	4
Harbachpark	0	0	1	2	1

BS 1 = Breeding possible, BS2 = Breeding probable and BS 3 = Breeding proved

⟨Nº⟩

3) Nature experience

Spaces of Nature Experiences

Mainz, Germany

The function of nature conservation in the city is... maintenance of species and biocenosis' as a basis for direct contact of the citizens with the natural elements of their environment (Sukopp & Weiler 1986, p. 25).

Nature experience

	Total Area of Urban		of which					
Year	Parks,Gardens and	# Publi		of which	# Special-Purpose	Gardens and	Parks	
	Green Areas	Green Area	Area of Parks	Roadside Green Area	Green Area	Nurseries	(unit)	
1978	761	383	309	75		308	42	
1980	1 738	390	319	71	970	303	45	
1985	2 339	522	412	110	1 551	143	52	
1990	3 570	983	712	271	2 255	294	83	
1995	6 561	1 793	920	873	4 429	309	100	
1996	7 231	2 008	933	1 076	4 889	305	105	
1997	7 849	2 484	961	1 523	5 083	253	108	
1998	8 855	3 117	976	2 141	5 456	253	111	
1999	11 117	3 856	993	2 863	6 \$\$\$	318	115	
2000	12 601	4 812	1 153	3 658	7 346	388	122	
2001	14 771	5 820	1 291	4 529	8 624	248	125	
2002	18 758		1 411	6 399	9 591	267	133	
2003	24 426	9 450	1 473	7 977	10 218	335	136	
2004	26 689	10 979	1 481	9 498	10 921	335	136	
2005	28 865	12 038	1 521	10 516	11 591	335	144	
2006	30 609	13 307	1 529	11 782	12 202	331	144	

Note:Data in table 10.15 to 10.17 are provided by Shanghai Landscape Bureau.

Year	Visitors to Parks and Zooes	Trees Planted	Roadside Trees	Greenlands Newly Created (hectare)	Coverage Rate of Urban Green Areas (%)
1978	3 876	35	13	(nectare)	8.2
1980	6 404	60	13	44	8.2
1985	8 372	208	15	226	9.7
1990	8 474	130	23	186	12.4
1995	9 064	279	33	516	16.0
1996	9 797	355	41	587	17.0
1997	9 757	383	43	728	17.8
1998	9 285	773	48	1 077	19.1
1999	9 601	845	54	1 315	20.3
2000	8 184	827	57	1 458	22.2
2001	8 561	1 384	65	1 374	23.8
2002	8 796	2 729	68	2 600	30.0
2003	9 629	2 540	74	4 904	35.2
2004	13 381	2 037	80	2 4 3 4	36.0
2005	13 656	2 117	83	2 116	37.0
2006	16 652	2 187	86	1 691	37.3

Parque Micaela Bastidas

Parque del Centenario

Parque Brigadier Cornelio de Saavedra

Parque General Las Heras

Distanz: from less than 500 m, Duration: 1/3 every day Expectations: cleanness and security

71

24

5

Roof garden Allotment garden **Community garden** 11111 www.en.wikipedia.org/ **URBAN** GARDENS School garden Intercultural garden **Hospital garden**

New chances – new challenges

- Urban Gardening, Allotments
- Derelict Land

ק

and

Urban

RG

- Trees and Urban Forests
- Combining services

Leipzig/Germany (213 allotment garden estates) 10 sqkm, 33,650 garden plots, about 70,000 gardeners

Allotment Gardening

RG Urban and Landscape Ecology

The allotment garden in Austria

RG Urban and Landscape Ecolog

Dresden – 1550 ha derelict land!

Green Conections Eilenburg Railway Station and Line Leipzig

10 -

Berlin, Germany: Natur-Park Südgelände

Free nature development and succession

inputs and waste outputs Ided field of landscape aesthetics (fourth nature) Innection

Stave Hill Ecological Park, London (1986-88)

Max Nicholson

(www.urbanecology.org.uk/; 08.09.10)

Ecology d became the 2nd rvancy Council

d to bring nto towns.

RG Urban and Landscape Ecology

"Forest City" Silberhöhe, Halle/Saale, Germany

- Renaturation of the fallow land
- 1989: 40.000 residents
- 2008: 15.000 residents
- 2010: 10.000 residents
- Development plan untill 2015: "forest to grow into the city"
- Extensive growing of deciduous trees on the fallow land

Combination of ES Biodiversity and Recreation

Example: Visitor Management in the Nature 2000 Area Alluvial Forest of Danube/Traun ("Enjoying nature without disturbing nature")

Sports, Playing, Swimming Solar City Pichling (3 500 inhabitants)

Area

Eco-Recreation-

Hiking-Trail Alluvial Forest of the River Traun - Weikerl Lake

Riskmanagement Salzburg, Sunday 2nd June, 2013

Regulating Service:

Large-scale wetland restoration in southern Louisiana

New Orleans September 2005

Every km of wetland reduce wave height by 1 m Wetland/water conversions 1932-present

Cities in water landscapes: The risks

Bangkok - Living in Water Landscapes The Flood 2011/2012

<N⁰>

Understanding floodplains as ecosystems in cities!

The Urban Flood in Dresden

Restoration of river Isar in Munich (2000 – 2011) Targets:

- Better flood protection
- More room and nature proximity for the riverside
- Improvement in the leisure and relaxation function of the urban river landscape.

Planning and execution 2000 – 2011 (flood protection and restoration measures)

- Eight river kilometers.
- Water quality of the restored river Isar is unique in Europe!
- Widening of the riverbed reduced flood risks
- Nature in the city
- The habitat variety improved
- Recreation and nature protection can go together
- The costs for the project 35 Mio. Euros) were carried to 55% of the Federal State of Bavaria and to 45% of the city of Munich.

Understanding flood plains as ecosystems in cities!

NATIONAL PARKS BOARD SINGAPORI

Structure

Part I: Profile of the City (Qualitative) Indigenous ecosystems found in the city

Native species found in the city

Quantitative data on populations of key biodiversity indicators

Other relevant biodiversity data

Part II: Indicator S (Quantitativ e)

Native Biodiversity in the City

Ecosystem Services Provided by Biodiversity in the Clty 10 Indicators

4 Indicators

Governance and Management of Biodiversity in the City

9 Indicators

The Trends

- Urban ecosystem services (UES) are still not accepted as planning targets
- UES are not always properly developed where they can be generated (on green spaces)
- UES are provided on all levels it starts with the site level!
- UES are partly destroyed by unattended planning and missuses
- UES can't be developed by more public financing
- More UES are needed where the people live
- Less UES are available where the people live
- Social inconsistence in consuming opportunities of UESs

The Society for Urban Ecology has five goals...

I. Develop an understanding of the structure and function of urban ecosystems;

2.Advance a balanced interaction between humans and their environments in cities and towns;

3. Foster and develop knowledge and implementation of urban ecology;

4. Strengthen contacts and enrich the dialogue between researchers, practitioners and teachers; SURE

Society for Urban Ecology

Jürgen Breuste SURE President

5. Make the collective expertise of urban ecologists available.

Urban Ecosystems our flagship journal

Urban Ecology and SURE

There is always a chance for urbanecosystem service on site level!

TOWARDS A NEW URBAN PARADIGM? Lecture 4: The case of urban rainwater management

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Conventional rainwater			
management			

Conventional rainwater management

New project for our team

Design of a new very modern building in the city of Salzburg

How should we carry out the management of rainwater in the building?

Module: Ecological aspects of urbanization in mountain areas

Conventional	rainwater		
management			

Conventional rainwater management

Summary of the ideas

Systems of pipes and gutters

Module: Ecological aspects of urbanization in mountain areas

Co-funded by the Erasmus+ Programme of the European Union

Conventional	rainwater		
management			

Conventional rainwater management

Summary of the ideas

Top-down governance structures

Fragmentation of organisation responsibilities

Mismatch between urban boundaries and those of hydrologic units

Module: Ecological aspects of urbanization in mountain areas

Co-funded by the Erasmus+ Programme of the European Union

CONCLUSION: Nature is the devil!!!

Module: Ecological aspects of urbanization in mountain areas

Co-funded by the Erasmus+ Programme of the European Union

Module: Ecological aspects of urbanization in mountain areas

"Drainage systems that consist of aboveground mechanisms that mimic natural processes to deal with flooding."

Module: Ecological aspects of urbanization in mountain areas

Green roofs

Ponds and wetlands

Conventional rainwater management	Alternative paradigms	SuDS	Transition processes	Conclusions
		SuDS		
Main t	cypologies			

Basins

Swales

Conventional rainwater management	Alternative paradigms		SuDS	Transition processes	Conclusions
		Su	DS		
Main ty	ypologies				

Permeable pavements

Rain barrels

Module: Ecological aspects of urbanization in mountain areas

In the transition to...

Current reality

Certain shift in the prevailing perceptions on rainwater

Awareness is increasing e.g. in Australia and Sweden

Al Mo

Module: Ecological aspects of urbanization in mountain areas

Conventional rainwater				
management				

In the transition to...

The example of Malmö (Sweden)

Eco-district of Augustenborg – rainwater

Rainwater system in Augustenborg (VA SYD, n.d.) (extracted from Kibirige and Tan, 2013)

Number	Implication	Number	Implication
1	The Augustenborg botanical roof garden area	9	Basketball court, storm water collected here travel to 10
2	Storm water storage pumped underground from storage area	10	Ditch through the park
3	Concrete canal	11	Outlet pond Nr 1
4	Wetland	12	Storage pond
5	Onion gutters	13	Macadam-bottomed ditch
6	Storage pond	14	Storage pond
7	Block flat with green roof	15	Constructed tone canal
8	Cube canal	16	Outlet pond Nr 2
			1

Conventional I	rainwater		
management			

In the transition to...

The example of Linz

Conventional rainwater management

Exercise

Please gather in groups and discuss on the following task.

1. Look at the orthophotos which have been provided to you on 2 city districts with dissimilar degrees of soil sealing. Afterwards, think of: which measures you would implement in order to manage rainwater in both districts. Take a multi-scalar perspective into account.

Time: 1 hour and 30 minutes

Conventional rainwater management

Oral presentation

It is time to present your results! Please present your results to the class on the following task. Afterwards, discuss on the distinct ideas suggested.

1. Look at the orthophotos which have been provided to you on 2 city districts with dissimilar degrees of soil sealing. Afterwards, think of: which measures you would implement in order to manage rainwater in both districts. Take a multi-scalar perspective into account.

Time: 30 minutes

THANKS FOR YOUR ATTENTION!!

MSc. Marc Giménez Maranges Department of geography and geology – University of Salzburg marc.gimenezmaranges@sbg.ac.at

Co-funded by the Erasmus+ Programme of the European Union

Mountains

An Introduction

Prof. Dr. Jürgen Breuste

Paris Lodron University Salzburg, Austria

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Mountains

... are

- specific ecosystems,
- diversity and complexity steep topographic, climatic and biological gradients
- sharp seasonal contrasts extreme climatic and geomorphic events
- strongly affect ecological and human environments

Mountain Landscape

- ... is characterised by
- instability and variability
- rock-strewn surfaces
- rapid physical weathering processes
- earth materials are continually being transported by gravity
- events such as mudflows, landslides, and avalanches

Mountain climates are extremely diverse

- Varied topography
- high contrasts in energy fluxes microclimates.
- Climatic patterns by the orientation, spacing, and steepness of slopes
- presence of snow patches, vegetation, and soil.
- windier
- air is thinner and clearer
- insolation more intense

Flora

- most rapid and striking changes in vegetation
- plant-community characteristics occur with increasing altitude, decrease in the number of species.
- Changes also take place in the form and structure of plants and in the assemblage of species
- the general tendency is toward smaller and less elaborate plants with slower growth rates, decreased productivity, decreased plant diversity, and less interspecies competition
- The presence of mountains profoundly influences the biogeography of the Earth through their effects on global climate and their biological role of serving as pathways, barriers, and islands with respect to the migration and evolution of species:

Durchschnittlicher prozentueller Anteil der Blüten, Blätter, Rhizome und Wurzeln an der Gesamtmasse (Trockensubstanz) von ausdauernden krautigen Pflanzen im Tal (z.B. Hohe Schlüsselblume, 600 m) und im Hochgebirge (z.B. Zwergprimel, 2000 m). Die existenzsichernden Pflanzenteile (Blätter, unterirdische Speicherorgane) sind in Tal- und Bergpflanzen prozentuell gleich ausgestattet, hingegen wird im Hochgebirge mehr Trockenmasse in das Wurzelwerk auf Kosten der Blütenbildung investiert. Nach KÖRNER und RENHARDT (1987).

Vegetation levels

21.13

Alps

Mountains also have important effects

....on

- climate of adjacent regions
- depends upon their location, size and orientation
- with respect to the moisture source and the direction of the prevailing winds
- Himalayas permits tropical climates to extend farther north in India and southeast Asia
- On the north side of the Himalayas, however, there are extensive deserts and the temperatures are abnormally low for the latitude

High mountain ecosystems

... are

- relatively undeveloped ecosystems
- the majority of ispecies are pioneers
- organisms respond to all environmental stresses by morphological adaptations, physiological adjustments, behaviour patterns, and community relations and interaction

Die Höhenstufen der Vegetation

The Alps

- second highest and most extensive mountain system in Europe
- total area of 240,000 km²
- length of 1,000 km
- 130 and 250 km wide
- many summits rise above 4,000 m
- most mountain groups exceed 3,000 m and have snow- and ice-capped peaks

Economic Use

Mountain peasants and tourism along a north-south profile through the Eastern Alps

Nature Conservation

Forest development in Austria

- About 50% of Austria is forest! Since 1961 increase by 230.000 ha
- Lost of extensive used agricultural land (meadows, pastures etc.)
- Concurrence of urbanization and agriculture for space
- Agricultural land goes to urbanization and forest
- Trend: Lost of forests in low forested landscapes for urbanization, forest grows, where already forest is

Forest Lost in Cenral Europe

Global Warming

General warming is expected

to

lead to an upward shift of the glacier equilibrium line between 60 to 140 m per °C temperature increase substantial glacier retreat duration of snow cover is expected to decrease by several weeks for each degree Celsius of warming at middle elevations in the Alps region

Cities in Mountains				
	Altitude in	Inh. in 1.000		
	m über	Ew.		
	N.N.			
Cali, Columbia	1.018	2.401		
Kaxgar, China	1.270	341		
Salt Lake City, USA	1.288	1.124		
Ulaanbaatar, Mongolia	1350	1.380		
Kathmandu, Nepal	1.400	1.003		
Guatemala City	1.533	2.918		
Guadalajara, Mexico	1.566	1.495		
Maseru, Lesotho	1.600	220		
Campos do Jordão,	1.628 51			
Brasil				
Windhoek, Namibia	1.655	326		
Almaty, Kirgistan	bis 1.700	1.508		
Srinagar, India	1.730	1.193		
Kabul, Afghanitan	1.791	4.635		
Erzurum, Turke	1.950	762		

Touristic Cities in Mountains				
	Altitude in m above			
	N.N.			
Chamonix, Frankreich	1.035			
Metsovo, Griechenland	1.160			
Ischgl, Österreich	1.377			
Lech, Österreich	1.444			
Campos do Jordão,	1.628			
Brasilien				
Obertauern, Österreich	1.664			
lfrane, Marokko	1.664			
Val d'Isere, Frankreich	1.785			
St. Moritz, Schweiz	1.822			
Obergurgl, Österreich	1.907			
Tochal, Iran	1.910			
Mussoorie, Indien	2.006			
Nainital, Indien	2.084			
Shimla, Indien	2.276			
Aspen, USA	2.438			
Valle Nevado, Chile	3.000			
St. Moritz, Schweiz	1.822			

Summer Tourism

-)

Winter Tourism

Tasks

- Who lives in mountains?
- Why do people live in mountains?
- From what people live in mountains?
- Is it true?: Mountain people
 - are less intellgent and less celver than lowland people
 - are more traditional
 - suffer under less development
 - are poorer
 - live more sustainable
 - want to live like lowland people
 - are physically and mentaly stronger
 - don't like changes
 - Are more social

Co-funded by the Erasmus+ Programme of the European Union

Risks, Challenges and Sustainable Development Urban Settlements in Himalaya

Prakash C. Tiwari Professor Department of Geography

Kumaun University, Nainital Uttarakhand, India Email: pctiwari@yahoo.com

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Mountains of the World

- Areas above 2500 m elevation have been included under mountains [FAO 2008]
- Mountain regions encompass nearly 24% of global land surface and constitute home for approximately 14% of the world's population [FAO 2008]
- Mountains constitute sources of a variety of ecosystems services, including water, biodiversity, soils, natural beauty, recreational opportunities, wilderness and cultural diversity
- Mountains constitute source of the largest trans-boundary river systems of the planet and nearly 70% of the World's population depends on mountains for the supply of freshwater (FAO 2018)
- Mountains have still the largest proportion of world's forests and constitute global biodiversity hot spots

Mountains of the World

- Mountain communities have evolved diversity of cultures that comprise traditional knowledge, resource development and environmental conservation practices, agricultural and food systems, adaptation and coping mechanism, institutions, languages, customs, and traditions
- Mountains are critical from the view point of marginality, environmental sensitivity, climate change, constraints of terrain, resource-productivity, inaccessibility and infrastructural development
- Mountains are inhabited by some of the poorest and most food insecure people of the planet as they have long been marginalized from the view point of sustainable development of their resources and inhabitants
- Currently, mountain ecosystems as well as mountain communities are particularly threatened by the ongoing processes of environmental global change, particularly climate change, population dynamics, rapid urbanization and globalizing economy and resultant exploitation of mountain resources

Himalaya: Highly Vulnerable to Global Environmental Changes

Himalaya: Global Climate Change Hot Spot

- The most densely populated mountain inhibited by the poorest people
- Constitute headwaters of some of the largest trans-boundary river basins on the earth that sustain more than 44% global population in the South Asia
- Climate change is likely to cause disruption of hydrological regimes of the Himalayan watershed and change the discharge, volume and availability of water and increase frequency and severity of extreme events both in mountains and lowland
- This will increase vulnerability of large population to water, food, health and livelihood insecurity
- Will have enormous regional implications for all range of ongoing developmental programmes and also to peace and security in South Asia

Integrated Farming System in Himalaya

[Rainfall 15 % Declined and Rainy Days Decreased 10]

[Only 11% Agricultural Land is Irrigated and Irrigation Potential is Declining]

Due to Constraints of Subsistence Economy Large Proportion of Male Population Out-migrates and this Leads to Feminization of Resource Development Process and Agriculture in Himalaya

Specificity of Himalayan Urbanization

- Himalaya is the most rapidly urbanizing mountain, and urbanization has emerged as one of the major drivers of environmental change
- Himalaya and Andes are the only high mountains where urban centres have developed above 2500 m
- However, the urban growth is the highest in Himalaya
- We have fast growing towns even in Great Himalaya
- Urbanization in Himalaya is primarily an outcome of livelihood induced rural out-migration; but climate change is accelerating the trends
- Process of urbanization is most unplanned and unregulated

Recent Trends of Urbanization in Himalaya

The Recent Trends of Urbanization in Himalaya

Growing Urban Inequalities in Himalaya

Environmental Implications of Unplanned Urban Growth in Himalaya

Status of Urban Freshwater Ecosystem Services in Western Himalaya (1985 – 2015)

State	Town	% Natural Springs Dried	% Water Discharge Declined	% Depletion of Traditional Water	% Water Availability Declined	% Increase in Landslides
				Sources		
Himachal Pradesh	Shimla	25	11	65	50	15
Himachal Pradesh	Hamirpur	31	15	70	45	11
Himachal Pradesh	Solan	39	25	75	50	15
Uttarakhand	Almora	41	47	90	55	12
Uttarakhand	Pauri	35	37	71	57	17
Uttarakhand	Ranikhet	40	41	65	51	21

Unplanned Urban Growth in Almora [Uttarakhand]

Urban Sprawl in and Around Shimla and Dharamshala [Himachal Pradesh]

Impacts of Urban Growth on Agricultural Resources

District	Urban Area	Impacts of Expansion of Urban Land Use (1971 – 2015)			
		% Loss	% Loss	% Decline	
		of Agricultural	of Forest	in Irrigated	
		Land		Land	
Uttarkashi	Uttarkashi	05.37	03.17	15.22	
Chamoli	Gopeshwer	04.71	05.14	21.07	
Rudrapryag	Rudrapryag	05.27	05.22	17.73	
Pauri Garhwal	Srinagar	10.15	06.49	05.22	
Tehri Garhwal	New Tehri	06.22	03.54	04.34	
Pithoragarh	Pithoragarh	12.97	09.63	11.91	
Bageshwer	Bageshwer	11.36	07.92	15.44	
Champawat	Champawat	07.14	03.44	07.15	
Almora	Almora	11.21	02.21	09.71	
Nainital	Lake Region	09.12	02.06	07.92	

Impacts of Urban Growth on Agricultural and Food Systems

Name of	Name of	% Decline in	% Increase in	% Loss	% Decline
District	Urban Area	Local Food	Local Food	of Rural	in Food
		Production	Deficit	Livelihood	Purchasing
				Opportunities	Power
Uttarkashi	Uttarkashi	31.17	71.00	67.00	07.00
Chamoli	Gopeshwer	35.22	65.00	74.00	11.00
Rudrapryag	Rudrapryag	21.14	74.00	42.00	09.00
Pauri	Srinagar	41.45	76.00	61.00	05.00
Tehri	New Tehri	19.00	85.00	65.00	12.00
Pithoragarh	Pithoragarh	37.23	86.00	45.00	08.00
Bageshwer	Bageshwer	44.17	79.00	87.00	11.00
Champawat	Champawat	31.77	67.00	64.00	07.00
Almora	Almora	55.00	95.00	81.00	12.00
Nainital	Lake Region	39.00	85.00	73.00	06.00

Urbanization in Khurpatal [Nainital]

Urbanized Lakes of Himalaya

Nainital: A Depleting Urban Lake

Parameters	Year of Monitoring			
	1995	2005	2015	
Maximum Depth	27.45	26.75	25.70	
Mean Depth	21.43	20.64	18.55	
Water Volume	31699.45 m ³	26978.42 m ³	26202.04 m ²	

- The mean depth of Lake reduced by 2.09 m between 1995 and 2015 (20 Years)
- The water storing capacity of the Lake also reduced by 5797 m³ between 1995 and 2015 (20 Years)
- Nearly 5797 m³ of sediment including sand, silt and mud was filled in the Lake bed between 1995 and 2015 (20 Years) at an average rate of 289.85 m³
- This indicates that the Lake will be completely filled up in about next 150 years
- The current rate of siltation in Nainital Lake is 21.50 mm/year

Urban Encroachment in Fertile Agricultural Land [Bageshwer, Uttarakhand]

Nainital: 17 September 1880

Nainital: 18 September 1880

Nainital: Today [2019]

Institutions: Key Actors in Urban Risk Governance

Way Forward

- Improved Understanding of Urban Systems, and Urban environmental impact assessment and planning
- Developing comprehensive understanding of urban ecosystem responses
- Comprehensive land use policy and integrated urban land use planning
- Mainstreaming Climate Change Adaptation and Disaster Risk Reduction into Integrated Urban Development Planning
- Improved Hydro-meteorological observations
- This would require a complete policy transformation and improved sciencepolicy interface

Thanks!

-les tiens

Research Group Urban and Landscape Ecology

Eco-Cities

SMART approaches for a sustainable future?

Jürgen Breuste SURE President, Salzburg

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Co-funded by the Erasmus+ Programme of the European Union

Disconnections

 Millennium Ecosystem Assessment (2005) – the world's largest assessment of ecosystems largely left out urban areas

 World Development Report - World Bank (2008) – the world's largest assessment of urbanization left out ecosystems

Shanghai, Yanzhong Greenery 2000-2001

17,07 ha built-up land was changed into 11,85 ha green area,4.837 families were settled elsewhere

A DI PIERO DELLA FRANCESCA C. 1480

The Ideal City

Living and Working in the Smoke

Living in the Suburbs-Working in the Smoke

Living & Working in the Sun at WELWYN GARDEN CITY

Theodor Fritsch (Germany): Plan of a future city (1905)

Theod. Fritsch: Die Stalt der Zukunft , Leipzig 1890

Körner & Dietrich, Geogr. Anstalt, Leipzig.

Planners and architects always to realize the ideal city!

LE CORBUSIER: La ville contemporaine (1934)

New Orleans September 2005

CITIES OF TOMORROW

An Intellectual History of Urban Planning and Design Since 188(

Fourth Edition

Eco-Cities A Planning Guide

Edited by Zhifeng Yang

CRC Press

Rebuilding Cities in Balance with Nature

REVISED EDITION

Richard Register

An Ecocity is...

- An ecologically healthy human settlement modeled on the self-sustaining resilient structure and function of natural ecosystems and living organisms.
- An entity that includes its inhabitants and their ecological impacts.
- A subsystem of the ecosystems of which it is part — of its watershed, bioregion, and ultimately, of the planet.
- A subsystem of the regional, national and world economic

system. http://www.ecocitybuilders.org/

"No such city exists. There are bits and pieces of the ecocity scattered about in present-day cities and sprinkled through history, but the concept- and hopefully, the reality- is just beginning to germinate."

EcoCity Builders

Type of eco-city developmentI—new developmentII—expansion of urban areaIII—retro-fit developmentDevelopment phase1—pilot/planning stage2—under construction3—implementedKey implementation modea—technological innovationb—integrated sustainability vision/planningc—civic empowerment/involvementEco City Report 2011

Needs:

- Definition of criteria as targets
- Indicators to measure the status
- Nature based not only technical solutions

Problems:

- Many eco-cities
- no clear eco-targets
- no comparability
- no certification

Cities in balance with nature!

1990 founded by Richard Register

EcoCity World Summits

- 1990 Berkeley, United States
- 1992 Adelaide, Australia
- 1996 Dakar, Senegal
- 2000 Curitiba, Brazil
- 2002 Shenzhen, China
- 2006 Bangalore, India
- 2008 San Francisco, United States
- 2009 Istanbul, Turkey
- 2011 Montreal, Canada
- 2013 Nantes, France
- 2015 Abu Dhabi, UAE, 11-13 October

170 Chinese cities aim to become sustainable cities

40-Eco-cities are in China in planning or building process!

Term	Comment	6 Dimensions
Sustainable city	Synonymous with 'eco-city/town' (in any of the four meanings in Table 3). The UN-Habitat Sustainable Cities Programme has been promoting this concept since the early 1990s.	of Smart cities
Sustainable community	Synonymous with 'eco-community' (see Table 3).	
Smart city	Used to emphasise hi-tech aspects of development – smart energy grids, IT networks, and related efficiencies in utility and service provision.	 economy
Slim city	World Economic Forum knowledge transfer initiative to encourage cities to increase efficiency across a variety of sectors, eg energy, transport, construction work.	 mobility
Compact city	Use of this term typically implies an opposition to urban sprawl. It is an influential urban design concept whose guiding principles include high residential density and the discouragement of private car use.	• environment
Zero energy city / zero net energy city	Uses no more energy than it is able to generate locally. This is achieved through a combination of measures to reduce current consumption and the introduction of new renewable energy sources.	people
Low carbon city	The reference to carbon (in this and the following two terms) may reflect national aspirations to create 'low carbon economies' – often as part of policies designed to mitigate climate change. The focus is on the physical aspects of cities: energy, transportation, infrastructure and buildings. 'Carbon' is sometimes used as shorthand for all greenhouse gases.	iivinggovernance
Carbon neutral city / net zero city	Similar to 'low carbon city' – except defined more strictly as a city which offsets carbon /greenhouse gas emissions such that its net emissions are zero.	
Zero carbon city	More specifically still, a city which produces no greenhouse gases and is run exclusively on energy from renewable sources.	
Solar city	May have a relatively narrow focus on replacing fossil fuels with solar energy, and is in some cases limited in its ambitions. The Indian Government's <i>Solar Cities</i> programme aims to reduce conventional energy use by 10%, with solar energy being part of a mix of renewable energy generation to be promoted.	
Oekostadt / Ökostadt	As well as being a direct German translation of the term 'eco-city', Ökostadt also refers more specifically to a series of Austrian, German and Swiss towns and cities which declared their intention to introduce principles of sound environmental management and sustainable development in the 1990s – often as part of an Agenda 21 programme.	Joss S (2011) Eco-Cities: The
Transition town	The Transition Town movement, which originated in the UK and Ireland, is a growing international phenomenon. Transition Town activities are typically organised at grass-roots level rather than embedded in policies. The aim is to build up local communities' social and environmental resilience to the effects of climate change and fossil fuel shortages – both of which are assumed to be inevitable in future.	Mainstreaming of Urban Sustainability: Key Characteristics and Driving Factors. International Journal of Sustainable Development and Planning 6(3):268-285
Eco-municipality	The label 'Eco-Municipality' describes a local authority which has adopted a particular series of values related to environmental and social sustainability, to guide policy making. The movement is most strongly associated with Sweden (where it has its roots in the 1980s), but has also gained recent ground in the USA.	

Indicators of

Environment

SUSTAINABILITY TRENDS

	Wild Salmon	Local wild salmon runs have dramatically declined since the 1980s, but have leveled off at dangerously low levels over the last six years.	↔
	Ecological Health	Decreasing natural vegetative cover reflects the spread of human influence and a broader decline in ecological health countywide.	?
	Soil Erosion	Sampled turbidity levels have returned to previous levels, but the complexity of the erosion processes makes it difficult to determine human activity impacts.	↔
	Air Quality	Seattle's air quality continues to improve; the number of "good" air quality days has increased to 89%.	↑
City of bioclimatic comfort	Pedestrian- & Bicycle- Friendly Streets	Lack of data highlights the need to focus on improving pedestrian and bicycle networks.	?
City contributing to closed water cycle	Open Space near Urban Villages	Currently 87% of Seattle's residents lives within about three blocks of the city's open spaces.	?
	Impervious Surfaces	Nearly one third of drainage lands are now impervious to surface water.	?
City of sustainable lifestyle		Calles -	
City built and managed with the inbabitants			h

Sustainable

Community

9 9 1 MAIN FEATURES OF AN ECOCITY

8

Ecological Criteria Catalogue (Breuste & Riepel 2007)

1. Open Space	2. Energy	3. Traffic	
Use existing vegetation and landforms to moderate climate conditions and provide	Energy-Conscious Urban Planning	Settlements should be located around or close to public transport nodes and frequently used routes	
protection for native habitats	Energy Conservation	Settlements should be planned around a network of pedestrian routes which	
Plant native or well- adapted species	Use renewable energy	encourage walking and cycling	
Use greenbelts and protected wetlands to	sources	Limit on-site parking	
create a continuous web of native habitats	Cooling	Use porous alternatives to traditional paving for roads	
Restore the native landscape		and walkways and reduce street width	
Open space for recreation and child's	Insulation Alternate Sources of Energy	Carpooling strategies should be encouraged in addition to mass-transit use	
рау 	Daylighting	Use existing vehicular transportation networks to minimize the need for new	
Roof gardens can be established on the flat	Energy Efficient	Infrastructure Minimize noise disturbance	
roofs of buildings using potted trees, shrubs and plants	Equipment and Appliances		

Breuste, Jürgen, Riepel, Jürgen (2007): Solarcity Linz/Austria – a European example for urban ecological settlements and its ecological evaluation. In: Warsaw, Univ., Faculty of Geography and Regional Studies (ed.): The Role of Landscape Studies for Sustainable Development, p. 627 - 640

KENNEDY, M. (Hrsg.) (1984): Öko-Stadt. Prinzipien einer Stadtökologie. Materialien zur Internationalen Bauausstellung Berlin (IBA). Band 1. Frankfurt am Main

KENNEDY, M. (Hrsg.) (1984): Öko-Stadt. Mit der Natur die Stadt planen. Materialien zur Internationalen Bauausstellung Berlin (IBA). Band 2. Frankfurt am Main

KENNEDY, M. und D. KENNEDY (Hrsg.) (1998): Handbuch ökologischer Siedlungs(um)bau. Neubau- und Stadterneuerungsprojekte in Europa. Berlin

Ecological Criteria Catalogue (Breuste & Riepel 2007)

	-		
4. Water	5. Waste	7. Siting and Land Use	8. Soil
Use permeable surfaces	Minimize use of		Minimize pavement
	resources - Reuse	Renovate older buildings	area
Collect and use harvested"	Existing Buildings	Renovate older Buildings	Emphasize
water	Minimize waste	Create community	preservation of
Collect and use rainwater	generated from	create commany	mature vegetated
	construction, renovation		soils
Design an appropriate	and demolition of	Encourage in-fill and	Minimize earthwork
baryesting and storage	buildings	mixed-use development	and clearing
evetom	Minimize waste		Minimize use of
	generated during	Minimize automobile	landscape irrigation,
Reduce overall water use	building occupancy	dependence	herbicides,
Utilize greywater for	6. Material	dependence	pesticides, and
nonpotable purposes	Design for future reuse	Value site resources	fertilizers
L	and adaptability		Consider use of
Use constructed wetlands	Use durable products		nermeable naving
	and materials		matorials
	Choose low-maintenance		
	building materials		Build pedestrian
Treat brownwater from	Avoid materials that will	Existing planted	surfaces with loose
toilet-flushing with on-site	offgas pollutants	vegetation that has to	aggregate, wooden
systems		remain on site needs to	decks, or well-
Use reclaimed water for	Choose building	be protected during	spaced paving
purposes such as toilet-	materials with low	construction	stones
flushing	embodied energy	Situate buildings to	1
liusining	Buy locally produced	benefit from existing	
	building materials	vegetation	
		Building smaller is better	1
	matorials when possible		
	Minimize peekeging		
	waste	Design for durability	
	Wasie	· · · · · · · · · · · · · · · · · · ·	
		H	

Breuste, Jürgen, Riepel, Jürgen (2007): Solarcity Linz/Austria – a European example for urban ecological settlements and its ecological evaluation. In: Warsaw, Univ., Faculty of Geography and Regional Studies (ed.): The Role of Landscape Studies for Sustainable Development, p. 627 - 640

Scales, levels and approaches

Spatial scale

- EcoDistricts, EcoNeigborhoods
- EcoCitiy (whole city)

Adoptation level

- Starting with the existing urban pattern
- Starting with completly *new urban pattern*

Selective approaches

 Ecosystems, energy, traffic etc.

The buildings

http://www.rhombergbau.at/de/home/allgemein_informati ompetenzen/bau/lifecycle_tower.html

LifeCycle Tower I

-

http://www.creebyrhomberg.com/en/

Green Buildings Vertical Farms. Green Towers etc.

The Urban Ecological Approach

- Profiting from ecosystem services
 Reduce transport needs of food
- and recreation
- •Contribute to mitigate climate change effects
- •Reduce ressource consumtion and emission

Benefiting from nature – innovative uses of urban ecosystems

Cities in balance with nature

© 2006, Richard Register

URBAN ECOSYSTEM

OPEN SPACE SYSTEM

- Parks
- Street trees
- Gardens (House, Institutional, Other private)
- Agricultural areas
- Rehabilitated areas
- Fragmented natural areas in city
- Natural areas surrounding city (Including nature reserves)
- Other open areas

ECOSYSTEM SERVICES AND FUNCTIONS

Provisioning .

- Food

- Clean water
- Genetic resources
- Regulating .
 - Air purification
 - Climate regulation

- Wood and fibres

- Mineral cycling

Supporting

- Soil formation
- Primary production
- Cultural .
 - Aesthetics
 - Education
 - Ecotourism

- Habitat
- Natural medicine
 - Water purification
- Erosion regulation
- Waste treatment
- Photosynthesis
- Spiritual values
- Recreation

- Habitat and species diversity

ECOSYSTEM HEALTH

Ecosystem resilience

Air quality

Water quality

Soil structure

.

.

- *First type of nature*: remains of the original natural landscape such as forests and wetlands
 - Second type of nature: cultural landscapes formed by agriculture mit meadows, pastures, fields, hedges, drifts, dry grasslands,
- *Third type of nature*: horticultural designed green spaces such as parks, road trees, front gardens, green buffers or potted plants,

Fourth type of nature: specific urban industrial nature such as ruderal urban forests, spontaneous vegetation, waste land etc. (Kowarik 1992)

Every km of wetland reduce wave height by 1 m

Wetland/water conversions 1932-present

Target: Ecosystem services of forests and trees

"Forest City" Silberhöhe, Halle/Saale, Germany

- 2008: 15.000 residents
- 2010: 10.000 residents
- Development plan untill 2015: "forest to grow into the city"

Gran Mendoza - about 400,000 urban street trees planted in the early to mid 20th century now 50 - 100 years old Itality has degraded visibly during the last decade

A 1972 M & Diversity of the second state of th

C

Parks and Gardens

Urban nature as tourist attraction: New York High Line

Urban Gardening and Urban Agriculture

Mein erstes Mal -

Important part of alien species (41%; Neophyts 30%)

Inner City Berlin, Embassies Quarter 1990

Dry grassland

Habitat for birds

Steinschmätzer

Wiesenpieper

1000

Berlin, Germany: Natur-Park Südgelände

Free nature development and succession

SolarCity Linz-Pichling (Austria)

- 2005 completed
- 35 ha
- 3.500 Inh.,
- 1.300 apartments

Solar City Linz – Key principles of sustainable framework

- Energy efficiency and sustainable energy usage
- Recreational infrastructure and pedestrian routes
- Open spaces and landscape as planning focus
- Nature protection and people's contact with nature
- Innovative building concepts
- Management of ressources
- Social stability (ownership and rental, age groups etc.)
- Urban district and mobility management
- Sustanability Monitoring focusing particularly on urban development, architecture, energy management, climate protection, material management and user satiffaction

The Approaches: Selection of Eco-City for Evaluation

KENNEDY 1984, 1998 - ECOCITY PRINCIPLES

REFERENCES:

KENNEDY, M. (Hrsg.) (1984): Öko-Stadt. Prinzipien einer Stadtökologie. Materialien zur Internationalen Bauausstellung Berlin (IBA). Band 1. Frankfurt am Main

KENNEDY, M. (Hrsg.) (1984): Öko-Stadt. Mit der Natur die Stadt planen. Materialien zur Internationalen Bauausstellung Berlin (IBA). Band 2. Frankfurt am Main

KENNEDY, M. und D. KENNEDY (Hrsg.) (1998): Handbuch ökologischer Siedlungs(um)bau. Neubau- und Stadterneuerungsprojekte in Europa. Berlin

- Siting and Land Use
- Open Space
- Soil
- Material
- Indoor
 Environmental
 Quality
- Energy
- Traffic
- Waters
- Waste

Criteria	1	2	3	4	5	Measures in the solarCity Linz
1. Open Space						
Use existing vegetation						
and landforms to						
moderate climate						Traun-Danube Riverside, park
conditions and provide						landscape
protection for native						
habitats						
Plant native or well-			XX			Revitalisation of the Aumühlbach,
adapted species						Plantings in the park landscape
Use greenbelts and						
protected wetlands to				xx		Traun-Danube Riverside;
create a continuous web of						Aumühlbach
native habitats			L			
Restore the native				xx		Revitalisation of the Aumühlbach
landscape			L			
Create open space for						Playgrounds for children; Local
recreation and child's						recreation in the Traun-Danube
play					XX	Riverside; Park landscape and
						Weikerlsee for recreation (sports,
			L			bathing)
Green the buildings						
(roof gardens etc.)						Only a small part of the buildings
						have roof gardens

Synergies and take offs of ESs Biodiversity and Recreation

Example: Visitor Management in the Nature 2000 Area Alluvial Forest of Danube/Traun ("Enjoying nature without disturbing nature")

Sports, Playing, Swimming Solar City Pichling (3 500 inhabitants)

Area

Eco-Recreation-

Hiking-Trail Alluvial Forest of the River Traun - Weikerl Lake

SolarCity Linz - City in balance with nature

RG Urban and Landscape Ecol

Salzburg Stadtwerke Area – New urban development (left)

Selected Eco-City Projects in China

Projekt:	Foreign Partner	Status
Beijing Mentougou Eco-City	Finnland	Signing of Sino-Finland
		Ecological Valley in May 2010.
		currently in the planning phase
Beijing Changxing International Eco-City	England	Planning phase
	(Arup)	
Tangshan Caofeidian International Eco-	Schweden	Start of the construction in September 2008;
City	(Sweco)	Start in March 2010 with 10 big projects
	England	(Total Investment: 11,6 Mird. RMB)
Shanghai Chongming Dongtan Eco-City	England (Arup)	Stort in the second part of the year 2008;
	(Arup)	Start in the second part of the year 2008;
	_	Construction began in February 2010
Suzhoù Western Eco-City		
Langfang Wanzhuang Eco-City	-	Construction began in Jun 2008
Wuxi National Low-Carbon Eco City	Schweden	Construction began in July 2010
Demonstration Zone, Wuxi Sino Swedish	(Tengbom)	
Low Carbon Eco sity		
Low-Carbon Eco-city	C	
Tianjin Sino-Singapone International	Singapur	Construction began in 2008. Until the end 2009:
Eco-City	(керреі)	realised investment 8,0 Wird. RMB, The total planned
	Dänomark	Planning phase
Zhangjiagang Sino-Danmark Ecological	Danemark	
Science & Technology Park		
Hubei Xianning Eco-City	Deutschland	Signing the "Strategic Partnership Fremework
	(Siemens)	Agreement" in October 2009;
		currently in the planning phase

4 main headings:

- Preserve the natural environment
- Socio-economic aspects
- Reduction of ecological footprint
- Governance

Suzhou Eco-Town, China

- Agro-urbanism (Functional inter-relationship between the production, distribution and consumption of food by connecting urban areas to agricultural land)
- Low Carbon Design

A New Eco-District: Integrating Planning Processes with Bioclimatic Design

"An approach to urban design based on integrated planning processes - combining local context, tradition, and an understanding of local conditions and climate with principles of European Urbanism."

指标体系

Sino-Singapore Tianjin Eco-City, China

Key Performance Indicators (KPI) Framework

350,000 inh. Start 2008

22 quantitative and 4 qualitative Key Performance Indicators (KPI) Promoting a healthy ecological environment Social harmony and progress Dynamic and efficient economy Integrated regional coordination 51 core factors, 129 key components, 275 control targets 723 control measures

主要指标

绿色建筑比例100%(即日开始)
可再生能源使用率≥20%(2020年)
非传统水资源利用率≥50%(2020年)
绿色出行所占比例≥30%(2013年前)≥90%(2020年)
单位GDP碳排放强度150吨-C/百万美元(即日开始)
自然湿地净损失0(即日开始)
绿化覆盖率>50%(2020年)
人均公共绿地m²/人≥12(2013年)
日人均生活耗水量升/人・日≤120(2013年)
垃圾回收利用率≥60%(2013年)
经济适用房,廉租房占本区住宅总量的比例≥20%(2013年)
就业住房平衡指数≥50%(2013年)

Key Performance Indicators (KPI)

			Qu	antitativ	e Indicators	
Healthy Ecological Environment	KPI Area	S/ No	KPI details	Units	Indicative Value	Timeframe
				Days	No. of days per year in which ambient air quality meets or exceeds China's National Ambient Air Quality Grade II Standard ≥310 (i.e. 85% of 365 days)	Immediate
		1	Ambient air quality	Date	No. of days per year in which SO2 and NOx content in the ambient air should not exceed the limits stipulated for China National Ambient Air Quality Grade I standard ≥155 (i.e. 50% of 310 days)	Immediate
					To meet the standard stated in the PRC's National Standard GB 3095-1996	By 2013
	Goo Natral	2	Quality of water bodies within the Eco-city		To meet Grade IV surface water quality standard stated in the latest PRC's National Standard GB 3838-2002	By 2020
	Entronment	3	Water from taps attaining drinking water (potable) standards	%	100	Immediate
		4	Noise pollution levels must satisfy the stipulated standards for different functional zones	%	100	Immediate
		5	Carbon emission per unit GDP	tonne-C per one million US dollars	150	Immediat
		6	Net loss of natural wetlands		0	Immediat
		7	Proportion of green buildings	%	100	Immediat
	Balancent Man-mac Environment	8	Local / Native plants index		≥0.7	Immediat
		2	Public green space per capita	per capita	≥12	By 2013
	Social Harmony	10	domestic aner consumption	litres per day per capita	≤120	By 2013
			Per capita domes, waste generation	kg per day per capita	≤0.8	By 2013
& Poo	& Progress	gress Proportion of		≥30	Before 20 ⁻	
rial Harmony Progress		12	green trips	%	≥90	By 2020
		13	rate	%	≥60	By 2013
	Comprehensive Infrastructure	14	Provision of free recreational and sports facilities within walking distance of 500m	%	100	By 2013

					N	
		15	Treatment to render solid waste non-hazardous	%	N 100	Immediate
		16	Barrier-Free Accessibility	%	100	Immediate
		17	Services network coverage	%	100	By 2013
	Sound Management Mechanism	18	Proportion of public housing	%	≥20	By 2013
Dynamic and Efficient Economy	Sustainable Economic Development	19	Renewable energy usage	%	≥20	By 2020
		20	Water supply from non-traditional sources	%	≥50	By 2020
	Vibrant Technological Innovation	21	Number of R&D scientists and engineers per 10,000 labour force	man-years	≥50	By 2020
	Overall Balanced Employment	22	Employment- Housing Equilibrium Index	%	≥50	By 2013

				Qualitative Indicators
	KPI Area	S/ No	KPI	KPI Description
Integrated Regional Coordination	Coordinated natural ecology	1	Healthy ecological safety, advocating green consumption, low carbon operations	To maintain an integrated regional ecology, strengthen ecological safety and establish a sound regional ecological security system within the Eco-city, from the perspective of the optimum usage of regional resources and energy, and the capacity of the environment.
	Coordinated regional policies	2	Advance innovative policies, united anti-pollution policies in place	Actively participate in and promote regional cooperation, and implement the principle of uniformity of public services. Regional policies should ensure regional policy coherence. Establish a sound regional policy system to ensure the improvement of the surrounding areas.
	Social and cultural coordination	3	(Give) prominence to the river estuarine cultural character	Urban planning and architectural designs should preserve history and cultural heritage; manifest the uniqueness, while protecting ethnic, cultural and scenic resources. Also, to ensure safe production and social order.
	Regional coordinated economy	4	Supplementing the recycling economySupplementing the recycling economy	Sound market mechanism to overcome the limitations of administrative divisions, drive the orderly development of the surrounding region, promote a reasonable division of functions at the regional level, as well as an orderly market, and relatively balanced economic development and living standards.

盐碱荒地 Saline-alkaline non-arable land

(摄于2008年2月)

New city in the marsh land

One third of the land

- Deserted salt pans
- Saline alkaline non-arable land
- Polluted water bodies
 The EcoCity cleans water and don't occupay arable land

Smart City

"With "green and integration" as the core, the planning aims to achieve the coordination and harmony..."

- ecological concept
- based on natural conditions
- 11.6 square kilometers
- ecological green land 30%.

1. 环境空气质量提升	Improving Air Quality
2. 园区智能化系统高水平建设	High ever bernery of Intelligent System on site
3. 海洋新兴产业发展优先	Priority of New Marine Industry
4. 本地产业共生与配套完善	Local Industrial Symbiosis and Encourage of Service Facilities for Key Industries
5. 绿色设计理念推广	Promotion of Green Design
6. 海洋文化特色突出	Outstanding Features of Marine Culture

Dongtan Eco-City

Linear City

- Buffer city /linear city
- Protecting and enhancing the bird habitat
- Energy from renewables
- Zero emission transport
- Water treatment and recycling
- Low traffic noise
- Light pollution control
- Near zero landfill
- Biodiversity in landscape

no loss of productive land, by providing 9 hectares of plant factories per 1,000 ha of productive land utilized

将来东河分期 future dongtan phases main nodes 主要节点 future dongtan phases 将来东滩分融 secondary nodes 次要节点 ň

202

3.2.K.

Ecolo

1.

The new eco-city will be the *existing city* changed to a more sustainable status!

What can be done?

A Future San Francisco

Intimate pedestrian access three-dimensionally throughout the city for people, not cars. In the renewable energy future, nature rebounds. People thrive in compact cities, towns and village on a small "land area footprint" and with a very small "ecological footprint" — footprint in terms of impact on our biosphere and natural resources.

© 2006, Richard Register

Make eco-city development measurable by definition of targets by criteria

- 2. Target to open spaces and buildings
- 3. Use **indicators** to measure reached status
- 4. Use **monitoring** and **improve** the status
- Use ecosystem services based on nature processes of green and water

There is always a chance to built an eco-city – just start small and concrete!

SE 1: Quiz "strategies for the sustainability of cities" -Conceiving the city of the future from the diffused to the eco-city model

MSc. Marc Giménez Maranges – Department of geography and geology – University of Salzburg

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The diffused city model

Module: Ecological aspects of urbanization in mountain areas

a. True

b. False

2	Match the pairs.			
	1. City and limits	a. are to deploy uses and functions in the territory in a dispersed manner.		
2. The cur	rent tendencies to produce urbanization	b. are two concepts that do not go together anymore		
3. Urban cor on the spa multi-funct	mplexities are not dependent ce and proximity offered by ionality in a small space, but	c. are replaced by mechanical or telecommunication means.		

The combination of the diffusion of buildings and the need for transport of people, matter and energy results in a (little use/ massive use/ reasonable use) of the means of locomotion. The mobility network is saturated, and attempts to free it from congestion with more kilometres of network result in an increase in congestion and the related variables. The resolution of transport conflicts generated by the diffused city can only be addressed (making cities more compact/ increasing the infrastructure/ increasing the number of traffic lights) to restore the lost speed or to solve network saturation. This process, generally, is the precursor of (new dispersed urban settlements/ new supermarkets/ new sustainability solutions), which will be make any extension of the network insufficient, and will transfer the problem of congestion and the variables that accompany it to ever greater areas.

The combination of the diffusion of buildings and the need for transport of people, matter and energy results in a (little use/ massive use/ reasonable use) of the means of locomotion. The mobility network is saturated, and attempts to free it from congestion with more kilometres of network result in an increase in congestion and the related variables. The resolution of transport conflicts generated by the diffused city can only be addressed (making cities more compact/ increasing the infrastructure/ increasing the number of traffic lights) to restore the lost speed or to solve network saturation. This process, generally, is the precursor of (new dispersed urban settlements/ new supermarkets/ new sustainability solutions), which will be make any extension of the network insufficient, and will transfer the problem of congestion and the variables that accompany it to ever greater areas.

a. Option "b" and a reduced use of the monofunctional polygons

b. The impoverishment of the contact, the exchange and the communication between people, different activities and institutions

c. The enrichment of the contact, the exchange and the communication between people, different activities and institutions

a. Option "b" and a reduced use of the monofunctional polygons

b. The impoverishment of the contact, the exchange and the communication between people, different activities and institutions

c. The enrichment of the contact, the exchange and the communication between people, different activities and institutions

Responses to the environmental crisis

a. Response of the United Nations (international consensus); and response of the priviate sector (to respond to the pressures of the environmental agenda)

b. Response provided by the proponents of the "radical ecologism"

c. Both option "a" and option "b" are correct

a. Response of the United Nations (international consensus); and response of the priviate sector (to respond to the pressures of the environmental agenda)

b. Response provided by the proponents of the "radical ecologism"

c. Both option "a" and option "b" are correct

- Public space is conceived as the main protagonist of social interaction
- Neighbourhoods are not simple dormitory areas, but they reflect the identity of their inhabitants
- Residential use is mixed with activities that have traditionally characterized the neighbourhood idea: commerce, etc.
- Several centres exist where numerous functions are concentrated

- Public space is conceived as the main protagonist of social interaction
- Neighbourhoods are not simple dormitory areas, but they reflect the identity of their inhabitants
- Residential use is mixed with activities that have traditionally characterized the neighbourhood idea: commerce, etc.
- Several centres exist where numerous functions are concentrated

The "decentralized concentration" model

The new urbanism called "urbanism of the three levels" is one three that projects not urbanism but plans, with the same detail and on the same scale that current city planners project the city-planning plan on the surface. Surface designing from and a in plan a in plan height the apart subsoil , plan, allows the set of variables of the current challenges to be shaped in one way or another.

The new urbanism called "urbanism of the three levels" is one three that projects not urbanism but plans (urbanism that projects not one but three plans), with the same detail and on the same scale that current city planners project the city-planning plan on the surface. Surface designing from and a in plan a in plan height the apart subsoil , plan (Designing a plan in height and a plan in the subsoil, apart from the surface plan), allows the set of variables of the current challenges to be shaped in one way or another.

8	Which of the following statements on the urbanism of the three levels is not correct?
---	---

a. Two levels of urban green should be created (one in the surface and one in height). This can be connected to other interesting programs, such as the creation of sound landscapes linked to insectivorous birds (cantora)

b. Massive private transport networks in the subsoil and on the surface should be promoted, and the mobility infrastructure with public transport should be minimised

c. Cities should increase in complexity, which attracts new knowledgeable legal and natural persons

8 Which of the following statements on the urbanism of the three levels is n correct?	8
---	---

a. Two levels of urban green should be created (one in the surface and one in height). This can be connected to other interesting programs, such as the creation of sound landscapes linked to insectivorous birds (cantora)

b. Massive private transport networks in the subsoil and on the surface should be promoted, and the mobility infrastructure with public transport should be minimised

c. Cities should increase in complexity, which attracts new knowledgeable legal and natural persons

The first example of Bosco Verticale has been realized in the city of (Rome/ Vienna/ Milan). It involved the construction of two towers of 80 and 112 m, capable of accommodating 480 large and medium-height trees, 250 small-sized trees, 5,000 shrubs, and 11,000 floral plants: a total of (100,000/ 10,000/ 9,000) square meters of forest. The buildings' biodiversity is expected to attract new species to the city. Vegetation is also used to moderate temperatures in the building and protects the interior spaces from noise pollution and dust from street-level traffic. The building itself is self-sufficient by using renewable energy from solar panels and filtered waste water to sustain the buildings' (plant life/ washings facilities/ toilets).

The first example of Bosco Verticale has been realized in the city of (Rome/ Vienna/ Milan). It involved the construction of two towers of 80 and 112 m, capable of accommodating 480 large and medium-height trees, 250 small-sized trees, 5,000 shrubs, and 11,000 floral plants: a total of (100,000/ 10,000/ 9,000) square meters of forest. The buildings' biodiversity is expected to attract new species to the city. Vegetation is also used to moderate temperatures in the building and protects the interior spaces from noise pollution and dust from street-level traffic. The building itself is self-sufficient by using renewable energy from solar panels and filtered waste water to sustain the buildings' (plant life/ washings facilities/ toilets).

10 Match the pairs.

1. The idea of "ecological modernization"

2. After the 1980s and 1990s, sustainability advocates learned that it

3. The eco-city approach

a. is embedded in the concept of ecological modernisation.

 b. posits that a market-based system of consumption and production does not automatically lead to more environmental devastation

c. is necessary to engage with business and use business language

Module: Ecological aspects of urbanization in mountain areas

10	Match the pairs.	
1. The idea	of "ecological modernization"	a. is embedded in the concept of ecological modernisation.
2. After the 1980s and 1990s, sustainability advocates learned that it		b. posits that a market-based system of consumption and production does not automatically lead to more environmental devastation
3. The eco-city approach		c. is necessary to engage with business and use business language

Module: Ecological aspects of urbanization in mountain areas

The eco-cty concept

- a. is an evolving term, which is being refined and improved, through the physical, ecological, technological, economic, psychological and social changes that are occurring in societies
- b. is a term used as a synonymous of diffused city, when in each of the monofunctional units of the diffused city ecologically-oriented techniques are implemented
 - c. was first mentioned by the United Nation, when the Local Agenda 21 was launched

a. is an evolving term, which is being refined and improved, through the physical, ecological, technological, economic, psychological and social changes that are occurring in societies

b. is a term used as a synonymous of diffused city, when in each of the monofunctional units of the diffused city ecologically-oriented techniques are implemented

c. was first mentioned by the United Nation, when the Local Agenda 21 was launched

a. Both option "b" and option "c" are correct

b. Ecological security, ecological sanitation, and ecological industrial metabolism

c. Ecoscape (ecological-landscape) integrity, and ecological awareness

a. Both option "b" and option "c" are correct

b. Ecological security, ecological sanitation, and ecological industrial metabolism

c. Ecoscape (ecological-landscape) integrity, and ecological awareness

- Materials re-use
- Life-cycle production
 - Renewable energy
- Efficient transportation

- Materials re-use
- Life-cycle production
 - Renewable energy
- Efficient transportation

Ecological industrial metabolism

Co-funded by the Erasmus+ Programme of the European Union

Module: Ecological aspects of urbanization in mountain areas

Some actions necessary for the eco-city development include:

- Safe building use transport cities and safe for non-motorized pedestrian transport
- Lessons, development sharing eco-city and resources experiences in

Some actions necessary for the eco-city development include:

- Safe building use transport cities and safe for non-motorized pedestrian transport (Building cities for safe pedestrian and non-motorized transport use)
- Lessons , development sharing eco-city and resources experiences in (Sharing experiences, lessons and resources in eco-city development)

16	Joss (2009) identified 100 eco-city initiatives around the globe (status autumn 2009)	
	a. True	
	b. False	

16	Joss (2009) identified 100 eco-city initiatives around the globe (status autumn 2009)	
	a. True	
	b. False	

17		Match the pairs.
1. Ear	lier models of eco-cities	a. is were implemented by governments to showcase their commitment to establish
		sustainable development
2. The projects of eco-city of the 1990s		b. gained considerable momentum and become embedded in mainstream policy- making
3. In the mid 2000s this phenomenon		c. were mostly community level, alternative movement initiatives

Module: Ecological aspects of urbanization in mountain areas

The majority of the eco-cities are located in Europe, with Scandinavian countries, (France/ Austria/ the United Kingdom) and Germany heading the table. The second largest concentration is found in (North America/ Asia and Australasia/ Antarctica), followed by (North America/ Asia and Australasia/ South America), Africa, Latin America, and the Middle East.

Module: Ecological aspects of urbanization in mountain areas

The majority of the eco-cities are located in Europe, with Scandinavian countries, (France/ Austria/ the United Kingdom) and Germany heading the table. The second largest concentration is found in (North America/ Asia and Australasia/ Antarctica), followed by (North America/ Asia and Australasia/ South America), Africa, Latin America, and the Middle East.

Module: Ecological aspects of urbanization in mountain areas

19	To which country are we referring? See the clues:

- More than 40 eco-town/eco-city projects were initiated already by 2009
- These projects are different in the initiation and development processes and frameworks in comparison with their European counterparts
 - Efforts to improve their urban planning and implementation policies are being increasingly based upon lessons from the experiences in e.g. Dongtan eco-town

19	To which country are we referring? See the clues:

- More than 40 eco-town/eco-city projects were initiated already by 2009
- These projects are different in the initiation and development processes and frameworks in comparison with their European counterparts
 - Efforts to improve their urban planning and implementation policies are being increasingly based upon lessons from the experiences in e.g. Dongtan eco-town

China

The case of Freiburg (Germany)

Module: Ecological aspects of urbanization in mountain areas

To improve energy efficiency in existing buildings, Freiburg established a support program for housing (isolation/ insulation/ remediation) and energy modernization. Many municipal buildings were also modernized. Between 2009 and 2011 a standard of (9/ 15/ 30) kWh / m2 / year was implemented, intending to approach the passive house model. I was promoted that houses were very well insulated from the outside, but had more (toilets/ shelters/ openings) than conventional ones, in such a way that they naturally obtain and conserve heat energy. Insulating materials protect them from outside temperature and keep the temperature generated inside.

To improve energy efficiency in existing buildings, Freiburg established a support program for housing (isolation/ insulation/ remediation) and energy modernization. Many municipal buildings were also modernized. Between 2009 and 2011 a standard of (9/ 15/ 30) kWh / m2 / year was implemented, intending to approach the passive house model. I was promoted that houses were very well insulated from the outside, but had more (toilets/ shelters/ openings) than conventional ones, in such a way that they naturally obtain and conserve heat energy. Insulating materials protect them from outside temperature and keep the temperature generated inside.

Module: Ecological aspects of urbanization in mountain areas

a. Approximately 400 photovoltaic installations and the first building in the world that has been sustained in a self-sufficient way with solar energy

b. The first football stadium and harbour of the world that have their own solar production plant

c. The first part of option "a" (400 photovoltaic installations) and the second part of option "b" (harbour with its own solar production plant) are correct

a. Approximately 400 photovoltaic installations and the first building in the world that has been sustained in a self-sufficient way with solar energy

b. The first football stadium and harbour of the world that have their own solar production plant

c. The first part of option "a" (400 photovoltaic installations) and the second part of option "b" (harbour with its own solar production plant) are correct

Module: Ecological aspects of urbanization in mountain areas

Erasmus+ Programme

In the Vauban district it is obligatory that buildings comply with requirements of low energy consumption. At the same time, in most buildings criteria criteria, , energy energy positive solar energy 0 requirements positive balance and have been applied.

Module: Ecological aspects of urbanization in mountain areas

In the Vauban district it is obligatory that buildings comply with requirements of low energy consumption. At the same time, in most buildings criteria criteria, , energy energy positive solar energy 0 requirements positive balance and (0 energy balance criteria, positive energy criteria, and solar energy requirements) have been applied.

26	In the district of Vauban (Freiburg), 2 car-free areas have been created, and the majority of householders have no car.				
a. True					
	b. False				

27

Why did people settle in Vauban (Freiburg)? Select the most suitable picture

a. (nice new apartments)

b. (chance to participate in the decision-making)

c. (crazy parties)

Module: Ecological aspects of urbanization in mountain areas

27

Why did people settle in Vauban (Freiburg)? Select the most suitable picture

a. (nice new apartments)

b. (chance to participate in the decision-making)

c. (crazy parties)

Co-funded by the Erasmus+ Programme of the European Union

Module: Ecological aspects of urbanization in mountain areas

The case of Linz (Austria)

Module: Ecological aspects of urbanization in mountain areas

Erasm of the

28	Which of the following measures have been applied in the solarCity (Linz, Austria)?
28	Austria)?

a. Low-energy construction is compulsory, as well as the use of solar panels for creating hot water

b. There is a system of urine separation and the whole district has been conceived as a carfree area

c. Option "a" and the first part of option "b" are correct

a. Low-energy construction is compulsory, as well as the use of solar panels for creating hot water

b. There is a system of urine separation and the whole district has been conceived as a carfree area

c. Option "a" and the first part of option "b" are correct

Erasmus+ Programme of the European

Module: Ecological aspects of urbanization in mountain areas

THANKS FOR YOUR PREPARATION!!

MSc. Marc Giménez Maranges Department of geography and geology – University of Salzburg marc.gimenezmaranges@sbg.ac.at

SE 2: Exercise "eco-cities and grassroots initiatives" -Conceiving the city of the future transitioning towards a more sustainable urban paradigm

MSc. Marc Giménez Maranges – Department of geography and geology – University of Salzburg

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

SE 2: Exercise "eco-cities and grassroots initiatives"

In-class discussion 1

Now, it is time to discuss! Please gather in groups and discuss on your conclusions. Afterwards, discuss your ideas with the rest of your classmates.

1. Do you think that the eco-city approach suffices for the attainment of a more sustainable urban paradigm? Think on the strengths and weaknesses of the eco-city concept.

Time: 30 minutes

Module: Ecological aspects of urbanization in mountain areas

In-class discussion 2

Please gather in groups and discuss on the following question. Develop your arguments on the basis of the knowledge gained through the video on the transition towns network that you have previously watched.

 You are very environmentally engaged and want to start with a grassroots initiative for the transformation of the urban area where you live. Think of how you would start a grassroots initiative, for a more sustainable urban development. Not least, think of: 1) the topic which you would like to develop (energy, etc.); 2) how you would start with the grassroots process (gathering of people); 3) how you would arrange the decision process; 4) how you would keep people engaged, etc.

Oral presentation

It is time to present your results! Please present your results to the class on the following question. Afterwards, discuss on the distinct ideas suggested.

1. You are very environmentally engaged and want to start with a grassroots initiative for the transformation of the urban area where you live. Think of how you would start a grassroots initiative, for a more sustainable urban development. Not least, think of: 1) the topic which you would like to develop (energy, etc.); 2) how you would start with the grassroots process (gathering of people); 3) how you would arrange the decision process; 4) how you would keep people engaged, etc.

Module: Ecological aspects of urbanization in mountain areas

THANKS FOR YOUR PREPARATION!!

MSc. Marc Giménez Maranges Department of geography and geology – University of Salzburg marc.gimenezmaranges@sbg.ac.at

Urban Biodiversity

Co-funded by the Erasmus+ Programme of the European Union

Univ.-Prof. Dr. Jürgen Breuste Paris Lodron Universität Chair Urban and Landscape Ecology Salzburg, Austria

S IS NOT THE OWNER.

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Urban biodiversity – some facts.....

✤Today 25% of the world's protected areas are within 17 km of an urban area - in 10 years 15 km

Urban sprawl is rapidly transforming and endangering critical habitats of global value e.g. in the Atlantic Forest Region of Brazil, the Cape of South Africa and coastal Central America

Urbanization is also viewed as a driving force for increased homogenization of fauna and flora

But.....

 Urbanization in some areas result in reduced pressure on land an considerable regrowth and increase in biodiversity
Cities may also be very rich in biodiversity and a remarkable amount of native species diversity is known to exist in and around large cities, such as Singapore, Canberra, Rio de Janeiro, Chicago, Berlin, New Delhi and Stockholm

95 % of native species occur in Metropolitan Chicago

National Urban Park Stockholm, Sweden

No other area in Sweden (of same size) have similar high species richness:

- •>1.000 sp. of butterflies,
- •1.500 beetles,
- •250 bird species
- •112 red-listed species

Largest population of large oak trees (Quercus robur) in Europe

Vgc

Biodiversity is ...

Species-, Habitat- and genetic diversity, and is also political target and regional advertiser

Shanghai, Yanzhong Greenery 2000-2001

17,07 ha built-up land was changed into 11,85 ha green area,4.837 families were settled elsewhere

First type of nature: remains of the original natural landscape such as forests and wetlands

Second type of nature: cultural landscapes formed by agriculture with meadows, pastures, fields, hedges, drifts, dry grasslands,

Third type of nature: horticultural designed green spaces such as parks, road trees, front gardens, green buffers or potted plants,

Fourth type of nature: specific urban industrial nature such as ruderal urban forests, spontaneous vegetation, waste land etc. (Kowarik 1992)

Cities offer many and special conditions Who is more competitive?

Urban Biodiversity only for Natives?

Berlin, Kowarik 1988 aus Kowarik 2010, S. 112

Table 3. Percentage of native and alien species (archeophytes, neophytes) in city zones of Berlin (West) and in the floras of surrounding rural districts of Brandenburg. Sources for 1: Auhagen and Sukopp (1982, number of neophytes changed by Kowarik, 1988); 2–5: Kunick (1974, 1982); 6–10: Klemm (1975).

	$\frac{area}{(km^2)}$	species	percentage of		
	(KIII)		natives	archeophytes neophytes	
1 Berlin (West) 480 City zones Berlin		1432		11.7	29.7
2 zone 1 (inner city)		380/km ²	50.2	15.2	34.6
zone 2		424/km ²	53.1	14.1	32.8
zone 3		415/km ²	56.6	14.5	28.9
zone 4 (outer fringe)		357/km ²	71.5	10.2	18.3
Brandenburg districts					
6 Spremberg	370	982	74.8	8.1	17.1
7 Ruppiner Land	1740	1092	75.7	8.9	15.4
8 Priegnitz	3350	1114	77.5	9.1	13.4
9 Dahme	120	771	78.4	10.6	11.0
10 Spreewald 180		745	79.3	10.4	10.3

- Most native species are sensitive again disturbances
- Intensive disturbances (urban conditions) = low number of native species
- Urban biodiversity only on non-typical urban sites?

61 years succession – from herbal to woody vegetation

366 species of ferns and flowering plants, 49 of mushroom, 49 of birds, 14 of grasshoppers, 57 of spiders, and 95 of bees, 60 of them endangered.

Do we have to shift the biodiveristy paradigm in cities?

Contents lists available at ScienceDirect

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

Novel urban ecosystems, biodiversity, and conservation

Ingo Kowarik

Department of Ecology, Technische Universität Berlin, Rothenburgstr. 12, D 12165 Berlin, Germany This paper reviews the ways in which biodiversity is affected by urbanization and argues for expanding urban conservation approaches.

The pradigm shifting

"While many conservation approaches tend to focus on such relict habitats and native species in urban settings, this paper argues for a **paradigm shift towards considering the whole range of urban ecosystems**. Although conservation attitudes may be challenged by the **novelty of some urban ecosystems**, which are often linked to **high numbers of nonnative species**, it is **promising to consider their associated ecosystem services, social benefits, and possible contribution to biodiversity conservation** " (Kowarik 2011, p. 1) Kowarik, I. (2011): Novel urban ecosystems, biodiversity, and conservation. Environmental Pollution (2011) 1-10

Urban is rich on exotics Tree of Heaven (*Ailanthus altissima*) Origin: China

> Urban species diversity in a urban-rural comparison

More often **less** species among butterflies, carabides, birds, lichens, mosses

(e.g. Seaward 1982, Blair 1999, Marzluff 2001, Clergeau et al. 2006, Niemelä & Kotze 2009)

More often more species among higher plants

(e.g. Kunick 1982, Kowarik 1990, Hope et al. 2003, Kühn & Klotz 2004, Celesti-Grapow et al. 2006, Knapp et al. 2009)

More non-native **and native** plants in cities than in the counrtryside !

Kühn, I, R. Brandl and Klotz , S. (2004). The flora of German cities is naturally species rich. Evolutionary Ecology Research, 2004, 6: 749–764

Cities are richer in species, but numbers of species don't say anything about the survival of species ...

Climate change

- decline of rare species
- especially of wetlands and sites low in nutrients

Important reasons

- changes of sites / lost of sites
- Effects of isolation

Alauda arvensis, 25% of the Berlin stock on in this area

2006 by Andreas Klein

20

2.

"Invention" of urbaner Biodiversity

TEMPELHOFER PARK

PARK

Tempelhofer Feld, Berlin

UT.

Biological diversity as part of the providing of one's live

Protection – sustainable utilization – fair access

The Potentials: Ecosystem Services

Reduction of risks by regulation,

Improvement of potentials for cultural anfd habitat services

Sustainability dimension	Urban Ecosystem Service	Quality of life indicator
Ecology	Air filtration Climate regulation Noise reduction Rain water drainage Water supply Habitat service	Health (clean air, protection against respiratory diseases, protection against heat and cold death) Safety Drinking water Food
Social sphere	Harmonious Landscape Recreation Cultural values Sense of identity Nature experience	Beauty of the environment Recreation and stress reduction Intellectual endowment Communication Place to live
Economy	Provision of land for economic and commercial activities and housing Food production	Accessibility Income

Estrangement from nature and "screen - nature"

Curitiba-Meeting, Brazil (2007) "The battle for life on earth will be won or lost in cities"

Dr. Ahmed Djiglaf **Executive Secretary CBD**

Newsday, Darcy

Cities become prime places of nature experiences

Increasing dependency of urban dwellers from ecosystem services within cities

Mainz, Germany Spaces for Nature Experiences

The function of nature conservation in the city is... maintenance of species and biocenosis' as a basis for direct contact of the citizens with the natural elements of their environment (Sukopp & Weiler 1986, p. 25).

Hin Berlin

Senatsverwaltung für Stadtentwicklung

Ingo Kowarik und Robert Bartz

BERLINER STRATEGIE ZUR BIOLOGISCHEN VIELFALT

Begründung – Struktur – Themenfelder – Ziele

-Entwurf-

i.d.F. der Diskussionsergebnisse bis 14.Januar 2011

vorgelegt von der

Arbeitsgruppe "Berliner Strategie zur Biologischen Vielfalt" der Senatsverwaltung für Stadtentwicklung

Urban Biodiversity Strategies

- Protection and support of biodiversity
- Participation of people
- To fill stakeholders and actors with enthusiasm

Berlin 2011

NATIONAL PARKS BOARD SINGAPORI

Structure

Part I: Profile of the City (Qualitative) Indigenous ecosystems found in the city

Native species found in the city

Quantitative data on populations of key biodiversity indicators

Other relevant biodiversity data

Part II: Indicator S (Quantitativ e)

Native Biodiversity in the City

Ecosystem Services Provided by Biodiversity in the Clty

10 Indicators

4 Indicators

Governance and Management of Biodiversity in the City

9 Indicators

Example Study Linz, Austria

Frequency – Number of species (breeding birds) and number of individuals in different biotopes in Linz

Frequency

- 1 low
- 2 medium
- 3 high

under 50 species, under 5,000 individuals 50 – 60 species, 5,000 to 11,000 individuals More than 60 species, more than 10,000 individuals

Biodiversity (birds as indicators) correlates with size, structural diversity, dominant structural elements and disturbances

Parks		Size	Struktural	Dominant	Intensity of	Number
		in na	arversity	B = Troop	uisturbances	01 broodin
						birde
1	Wassarwold	70.96	2		2	22
1.		70,00	3	D	2	22
Ζ.	Bauernberg	9,54	3	B	2	37
3.	Freinberg Aroboretum	9,0	2	R/B	2	24
4.	Hummelhofwald	7,81	3	В	3	31
5.	Erholungspark Urfahr	7,73	1	R	2	7
6.	Donaupark	7,57	2	R/F	3	21
7.	Freinberg West-Ost	6,5	3	3	2	31
8.	Universitätspark	4,1	3	R	1	16
9.	Bergschlössl	2,79	1	R	2	25
10.	Pöstlingsberg	2,61	3	R	2	15
11.	Volksgarten	2,6	2	В	3	19
12.	Wag-Park	1,67	1	R	3	10
13.	Panuliwiese	1,5	2	R	3	24
14.	Harbachpark	1,39	2	В	3	1
15.	J.W.Kleinstrasse	1,35	2	R	3	10
16.	Ökopark	1,12	1	В	1	10
17.	Schlossberg	1,1	2	В	2	23
18.	Peuerbachstrasse	1,07	1	R	2	4
19.	Ing.Stern.Strasse	1,02	1	R	3	9

Breuste et al. 2013b. Struktural diversity: 3 = high, 2 = medium, 1 = low, Sintensity of disturbances (noise, visitors): 3 = high, 2 = medium, 1 = low

Does green cost more than it spends?

 Land Cover Type
 Water
 0
 250
 500

 Tree
 Water
 0
 250
 500

 Grass/Herbaceous
 Impervious
 Meters

Tab. 10: Administrative costs of Schlosspark Nymphenburg 2011

Type of Costs	Costs (€/yr)
Material Costs:	
 Equipment and Machines 	30 000
 Maintenance of Vehicles, Equipment, Safety Equipment etc. 	130 000
 Maintenance of Immovable Assets (Land, Pathway Surfaces, Water Bodies, Bank Reinforcement etc.) 	140 000
Labor Costs for 28 Workers (Gardeners, Supervisors etc.)	850 000
Total	1 1 50 000

Tab. 9: Monetized values of ecosystem services for Schlosspark Nymphenburg by land cover types (€/yr)

Ecosystem Service Land Cover Type	Carbon Sequestration and Storage	Air Pollution Removal	Runoff Reduction	Groundwater Recharge	Total
Ггее	15 080 (673 316)	392 170	155 824	14 070	577 144
Grass/Herbaceous	0 (2 211)	0	30 464	2 751	33 215
Water	0	0	17 227	0	17 227
mpervious	0	0	0	0	0
Fotal	15 080	392 170	203 515	16 821 🤇	627 586

Tim Aevermann / Jürgen Schmude, Munich Quantification and monetary valuation of urban ecosystem services in Munich, Germany. Zeitschrift für Wirtschaftsgeographie Jg. 59 (2015) Heft 3, S. 188–200

Central and northern Belgium composed of highly urbanized areas and Natura 2000 areas only.

Source: European Environment Agency 2007

Example Area Linz

Practical Application of Nature Conservation

Example: Visitor Management in the Nature 2000 Area Alluvial Forest of Danube/Traun ("Enjoying nature without disturbing nature")

Sports, Playing, Swimming

Solar City Pichling (3-500 inhabitants

Eco-Recreation-Area

Hiking-Trail Alluvial Forest of the Rive Traun - Weikerl Lake

That we

voest-alpine Iron and Steel-Industry

Diversity is valued

93 Visitors of the Nature 2000 Area

Vatentina León, 13 years old about her uURBAN NATURE along Matanza-Riachulelo, river in Buenos Aires

Urbane Biodiversity can be developed!

...let's start!

SE 4: Exercise "rainwater management at the district scale" -Conceiving the city of the future the case of urban rainwater management

MSc. Marc Giménez Maranges – Department of geography and geology – University of Salzburg

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

SE 4: Exercise "rainwater management at the district scale"

Discussion

Please gather in groups and discuss on the following task.

1. Look at the orthophotos which have been provided to you on 2 city districts with dissimilar degrees of soil sealing. Afterwards, think of: which measures you would implement in order to manage rainwater in both districts. Take a multi-scalar perspective into account.

Time: 1 hour and 30 minutes

Module: Ecological aspects of urbanization in mountain areas

SE 4: Exercise "rainwater management at the district scale"

Oral presentation

It is time to present your results! Please present your results to the class on the following task. Afterwards, discuss on the distinct ideas suggested.

1. Look at the orthophotos which have been provided to you on 2 city districts with dissimilar degrees of soil sealing. Afterwards, think of: which measures you would implement in order to manage rainwater in both districts. Take a multi-scalar perspective into account.

Time: 30 minutes

Module: Ecological aspects of urbanization in mountain areas

THANKS FOR YOUR PARTICIPATION!!

MSc. Marc Giménez Maranges Department of geography and geology – University of Salzburg marc.gimenezmaranges@sbg.ac.at

Tasks

- Who lives in mountains?
- Why do people live in mountains?
- From what people live in mountains?
- Is it true?: Mountain people
 - are less intellgent and less celver than lowland people
 - are more traditional
 - suffer under less development
 - are poorer
 - live more sustainable
 - want to live like lowland people
 - are physically and mentaly stronger
 - don't like changes
 - Are more social

Co-funded by the Erasmus+ Programme of the European Union

Climate Vulnerability Assessment of Urban Settlements in Himalaya

Prakash C. Tiwari Professor Department of Geography Kumaun University Nainital, Uttarakhand, India

Bhagwati Joshi Assistant Professor Department of Geography Government Post Graduate College Rudrapur, Uttarakhand, India

*The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Definitions: Climate Impacts

Vulnerability: Degree to which a system is susceptible to the adverse effects of climate change, including climate variability, climate extremes and related direct and indirect impacts

Exposure	Sensitivity	Adaptive Capacity
Nature and degree to which a system is exposed to significant climatic variations and/or its consequences and impacts	The degree to which a system is affected either adversely or beneficially, by climate related stimuli	Ability to adjust to climate change, to moderate the potential damage from it, to take advantage of its opportunities, or to cope with its consequences
Ex: slums in flood prone areas, steep slopes, landslides	Ex: infants, children, elderly and sick people, poor, women	Ex: Inability to move to a safer location, resources, information, awareness, poverty

Who or What is vulnerable to What and Why?

- Who or What: Population groups, zones/wards, and sectors (e.g. infrastructure for water supply etc.)
- To What: Impacts of climatic threats (e.g. flood, drought, water scarcity, spread of vector borne diseases etc.)
- Why: Capacities and resources to deal with the impacts of climatic hazards

Identifying Vulnerable Urban Systems

Q1: Which are the vulnerable systems that need to be strengthened?

Q2: Why these systems are vulnerable to climate change impacts?

Q3: How likely the climate change impacts affect these urban systems? What does the interpretation of data and information from the situation indicate and suggests

What are the key concerns problems and priorities raised by the community

Expected impacts of projected climate events: they may increase/decrease/not affect the vulnerability of the urban systems

While undertaking Vulnerability Assessments need to look at both current and future vulnerabilities:

Assess current vulnerabilities under current climatic conditions Estimate future vulnerabilities under projected climate conditions

Exposure to Climate Change Stressors	Level of Exposures (Rank 1 to 5)	Parameters of Sensitivity to Climate Change	Level of Sensitivity (Rank 1 to 5)	Parameters of Adaptive Capacity to Climate Change	Level of Adaptive Capacity
0					(Rank 1 to 5)
Temperature Rise		Geology		Education and Knowledge	
Erratic Rainfall		Terrain Characteristics		Information	
Increased Rainy Days		Drainage System		Communication	
Decreased Rainy Days		Age of Building		Awareness	
Flash Floods		Building Code		Skill and Training,	
Floods		Access to Road		Scientific Reliability	
Heavy Snowfall		Population Density		Technology	
Windstorm		Poverty Level		Livelihood Options	
Hailstorm		Water Availability		Climate Change Adaptation	
Severe Icing		Slums		Institutions	
Fire and Forest Fire		Women and Elderly Population		Equity and Access	
Landslides		Open/Congested		Access and Connectivity	
Total Score					
Average Score					

Exposure: Sensitivity: Adaptive Capacity: Vulnerability Index: Highest Exposure – 5 and Least Exposure – 1

Highest Sensitivity – 5 and Least Sensitivity – 5

Highest Adaptive Capacity – 5 and Least Adaptive Capacity – 1 (i) Add all the ranks of Exposure, Sensitivity and Adaptive Capacity, and take their averages separately, (ii) add the averages of Exposure and Sensitivity, and (iii) to obtain the vulnerability index subtract the average rank of adaptive capacity from the added average ranks of exposure and sensitivity

Identification of Key Vulnerabilities and Potential Adaptation Measures

Critical Climate	Critical Sensitivity	Critical Adaptation	Priority Adaptation	Key Institutions
Stressors	Parameters	Parameters	Options	
High Intensity Rainfall	Steep Slope	Lack of Information	Improved Access	Public Work
		and Awareness		Department
Flash Floods	Unstable Zone	Lack of Institutional	Improved Information	Municipal Council
		Capacity		
Landslides	High Density Built Up	Lack of Institutional	Improved Institutional	Municipal Council
	Area	Coordination	Coordination	NGOs, CSOs
Droughts	Poor Access	Lack of Rescue	Availability of Rescue	Municipal Council
		Resources	Resources	
Fire	Old Structures	Poverty	Reliable Information	Meteorological
				Department
Potential Adaptation Measures

Climate Change Events	Potential Adaptation Measures
Increased Temperatures	 Green and blue spaces Reduction in paved surfaces Enforce building codes Rooftop gardens Assisting vulnerable population groups
Increased Rainfall	 Hazard Zone Mapping Improvement in drainage system Green spaces Restoring wetlands Reducing impervious surfaces Relocate families living in vulnerable sites
Reduced Rainfall	 Rain water storage tanks Rooftop water harvesting Grey water recycling Water retention ponds Systems for equitable water distribution

Thanks!